

Denison Mines (USA) Corp. 1050 17th Street, Suite 950 Denver, CO 80265 USA

Tel: 303 628-7798 Fax: 303 389-4125

www.denisonmines.com

VIA FEDERAL EXPRESS

June 1, 2007

Dane L. Finerfrock, Executive Secretary Utah Radiation Control Board Utah Department of Environmental Quality 168 North 1950 West P.O. Box 144810 Salt Lake City, Utah 84114-4810

Dear Mr. Finerfrock:

Re: Transmittal of 1st Quarter 2007 Chloroform Monitoring Report-White Mesa Uranium Mill

Enclosed are two copies of the White Mesa Uranium Mill Chloroform Monitoring Report for the 1st Quarter of 2007, as required under the State of Utah Notice of Violation and Groundwater Corrective Action Order No. UGQ-20-01.

Yours very truly,

DENISON MINES (USA) CORP.

Steven D. Landau

Manager-Environmental Affairs

White Mesa Uranium Mill

Chloroform Monitoring Report

State of Utah
Notice of Violation and Groundwater Corrective Action Order UDEQ
Docket No. UGQ-20-01

1st Quarter (January through March) 2007

Prepared by:

Denison Mines (USA) Corp. (DUSA) 1050 17th Street, Suite 950 Denver CO 80265

1. INTRODUCTION

This is the Quarterly Chloroform Monitoring Report, as required under State of Utah Notice of Violation and Groundwater Corrective Action Order State of Utah Department of Environmental Quality ("UDEQ") Docket No. UGQ-20-01 for the 1st Quarter of 2007 (the "Quarter") for Denison Mines (USA) Corp.'s ("DUSA's") White Mesa Uranium Mill (the "Mill"). This Report also includes the Operations Report for the Long Term Pump Test at MW-4, TW4-19, TW4-15 (MW-26) and TW4-20 for the Quarter.

2. SAMPLING AND MONITORING PLAN

Description of Monitor Wells Sampled During the Quarter 2.1.

During the Quarter, the following chloroform contaminant investigation groundwater samples and measurements were taken:

Groundwater Monitoring 2.1.1.

Groundwater Monitoring was performed in all of the chloroform monitoring wells, being the following wells:

- MW-4
- TW4-A
- TW4-1
- TW4-2
- TW4-3
- TW4-4
- TW4-5
- TW4-6
- TW4-7
- TW4-8 TW4-9
- TW4-10

- TW4-11
- TW4-12
- TW4-13
- TW4-14
- TW4-15 (MW-26)
- TW4-16
- TW4-17 (MW-32)
- TW4-18
- TW4-19
- TW4-20
- TW4-21
- TW4-22

The locations of these wells are indicated on the map attached under Tab A.

Each of these wells was sampled for the following constituents on February 28, 2007:

- Chloroform
- Chloromethane
- Carbon tetrachloride
- Methylene chloride
- Chloride
- Nitrogen, Nitrate + Nitrite as N

As UDEQ is aware, Denison has experienced difficulty in obtaining chloroform samples from well TW4-14. The difficulty arises from the very limited recovery rate encountered at that location. More specifically, it is generally necessary that there be at least 1.5 feet of water within the well in order to obtain a sample which is not influenced by sedimentation from the bottom of the well. At the request of UDEQ, the recovery rate from the TW4-14 location was evaluated by bailing and routine water level measurements in order to determine the necessary time between purging and sample collection. Such an evaluation was undertaken between September 21 and October 20 with limited success in water recovery experienced during this study period. Nonetheless, quarterly samples were able to be collected from well TW4-14 during the 4th Quarter of 2006 (November 8, 2006) and for this 1st Quarter, 2007 sampling (February 28, 2007). Because of the limited data base, trend analyses is not possible for TW4-14 at this time and, as such, is not included in the graphic display at Tab L of this report. The chloroform concentration in this well was less than the detection limit for the November 8, 2006 and February 28, 2007 samplings at this location.

2.1.2. Groundwater Head Monitoring

Depth to groundwater was taken in the following wells and/or piezometers during the Ouarter:

- a) All of the chloroform contaminant investigation wells listed in paragraph 2.1.1 above on February 27, 2007;
- b) The following point of compliance monitoring wells under the Mill's Groundwater Discharge Permit ("GWDP") during the period March 16, 2007: MW-1, MW-2, MW-3, MW-3A, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32;
- c) Piezometers P-1, P-2, P-3, P-4 and P-5 on March 21, 2007; and
- d) Existing monitoring wells MW-20 and MW-22 on March 21, 2007

In addition, weekly depth to groundwater was taken in MW-4, TW4-15 (MW-26), TW4-19 and TW4-20, as part of the long term pumping test for MW-4.

2.2. Sampling Methodology, Equipment and Decontamination Procedures

The sampling methodology, equipment and decontamination procedures that were performed for the chloroform contaminant investigation during the Quarter can be summarized as follows:

2.2.1. Well Purging and Depth to Groundwater

a) A list is gathered of the wells in order of increasing chloroform contamination. The order for purging is thus established. Mill personnel start purging with all of the non-detect wells and then move to the more contaminated wells in order of chloroform contamination, starting with the wells having the lowest chloroform contamination; and

b) Before leaving the Mill office, the pump and hose are rinsed with de-ionized ("DI") water. Mill personnel then proceed to the first well which is the well indicating the lowest concentration of chloroform based on the previous quarters sampling results. Well depth measurements are taken and the two casing volumes are calculated (measurements are made using the same instrument used for the monitoring wells under the Mill's GWDP). The Grundfos pump (a 6 gpm pump) is then lowered to the bottom of the well and purging is begun. At the first well, the purge rate is established for the purging event by using a calibrated 5 gallon bucket. After the evacuation of the first well has been completed, the pump is removed from the well and the process is repeated at each well location moving from least contaminated to most contaminated. All wells are capped and secured prior to leaving the sampling location.

c)

2.2.2. Sampling

- a) Following the purging of all chloroform investigation wells, the sampling takes place (usually the next morning). Prior to leaving the Mill office to sample, a cooler along with blue ice is prepared. The trip blank is also gathered at that time (the trip blank for these events is provided by the Analytical Laboratory). Once Mill Personnel arrive at the well sites, labels are filled out for the various samples to be collected. All personnel involved with the collection of water and samples are the outfitted with rubber gloves. Chloroform investigation samples are collected by means of dedicated bailers and the wells are purged by means of a dedicated portable pump. Each quarterly pumping and sample collection event begins at the location least affected by chloroform (based on the previous quarters sampling event) and proceeds by affected concentration to the most affected location. The dedicated portable pump is appropriately decontaminated prior to each purging sampling event and the QA rinsate sample is collected after said decontamination but prior to the commencement of the sampling event.
- b) Mill personnel use a disposable bailer to sample each well. The bailer is attached to a reel of approximately 150 feet of nylon rope and then lowered into the well. After coming into contact with the water, the bailer is allowed to sink into the water in order to fill. Once full, the bailer is reeled up out of the well and the sample bottles are filled as follows;
 - (i) First, a set of VOC vials is filled. This set consists of three 40 ml vials provided by the Analytical Laboratory. The set is not filtered and is preserved with HCL;

- (ii) Second, a 500 ml sample is collected for Nitrates/Nitrites. This sample is also not filtered and is preserved with H2SO4 (the bottle for this set is also provided by the Analytical Laboratory);
- (iii) Third, a 500 ml sample is collected for Chloride. This sample is not filtered and is not preserved; and
- c) After the samples have been collected for a particular well, the bailer is disposed of and the samples are placed into the cooler that contains blue ice. The well is then recapped and Mill personnel proceed to the next well.

DUSA completed (and transmitted to UDEQ on May 25, 2006) a revised Quality Assurance Plan ("QAP") for sampling under the Mill's GWDP. The GWDP QAP was reviewed by UDEQ and has been approved for implementation. The QAP provides a detailed presentation of procedures utilized for groundwater sampling activities under the GWDP. While the water sampling conducted for chloroform investigation purposes has been conformant with the general principles set out in the QAP, some of the requirements in the QAP were not fully implemented for reasons set out in correspondence to UDEQ dated December 8, 2006. Subsequent to the delivery of the December 8, 2006 letter, DUSA discussed the issues brought forward in the letter with UDEQ and has received correspondence from UDEQ about those issues. In response to UDEQ's letter and subsequent discussions with UDEQ, DUSA has incorporated changes in chloroform QA procedures in the form of a separate document. The chloroform QA document describes the differing needs of the chloroform program and attaches the GWDP QAP to that document for QA needs other than those described in the chloroform QA document.

2.3 Field Data Worksheets

Attached under Tab B are copies of all Field Data Worksheets that were completed during the Quarter for the chloroform contaminant investigation monitoring wells listed in paragraph 2.1.1 above and sampled on February 28, 2007.

2.4 Depth to Groundwater Sheets

Attached under Tab C are copies of the Depth to Water Sheets for the weekly monitoring of MW-4, TW4-15 (MW-26), TW4-19 and TW4-20 as well as the monthly depth to groundwater monitoring for all of the chloroform contaminant investigation wells. Depth-to-groundwater measurements for February, 2007 (the quarterly sampling event) are included on the Field Data Worksheets included under Tab B.

3. DATA INTERPRETATION

3.1. Interpretation of Groundwater Levels, Gradients and Flow Directions.

3.1.1. Current Site Groundwater Contour Map

Included under Tab D is a water table contour map, which provides the location of all of the wells and piezometers listed in item 2.1.2 above for which depth to groundwater was taken during the Quarter, the groundwater elevation at each such well and piezometer, measured in feet above mean sea level, and isocontour lines to delineate groundwater flow directions observed during the Quarter's sampling event. The contour map uses the February 27, 2007 data for the wells listed in paragraph 2.1.2 (a) above; March 16, 2007 data for the wells listed in paragraph 2.1.2 (b), and March 21, 2007 for the piezometers listed in paragraph 2.1.2 (c) above and the wells listed in paragraph 2.1.2 (d) above.

Also included under Tab D is a groundwater contour map of the portion of the Mill site where the four chloroform pumping wells are located, with hand-drawn stream tubes, in order to demonstrate hydraulic capture from the pumping

3.1.2. <u>Comparison of Current Groundwater Contour Maps to Groundwater Contour Maps for Previous Quarter</u>

The groundwater contour maps for the Mill site for the fourth quarter of 2006, as submitted with the Chloroform Monitoring Report for the fourth quarter of 2006, dated January 31, 2007, are attached under Tab E.

A comparison of the water table contour maps for the Quarter to the water table contour maps for the previous quarter indicates similar patterns of drawdown related to pumping of MW-4, MW-26 (TW4-15), TW4-19 and TW4-20. Water levels and water level contours for the site have not changed significantly since the last quarter, except for decreases in water levels at pumping wells MW-26 and TW4-19, and increases in water levels at TW4-12 and TW4-13.

Water levels decreased (and drawdowns increased) by approximately 10 feet at MW-26, and by approximately 5 feet at TW4-19. Water level fluctuations in these pumping wells are due in part to fluctuations in pumping conditions just prior to and at the time the measurements are taken.

Water levels increased by approximately 4 feet in TW4-12, and by approximately 6 feet in TW4-13. These increases appear consistent with a general increasing trend in water levels in these wells that is likely related to seepage from the wildlife ponds located to the north of the wells.

3.1.3. Hydrographs

Attached under Tab F are hydrographs showing groundwater elevation in each chloroform contaminant investigation monitor well over time.

3.1.4. Depth to Groundwater Measured and Groundwater Elevation

Attached under Tab G are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

3.1.5. Evaluation of the Effectiveness of Hydraulic Capture

Perched water containing chloroform has been removed from the subsurface by pumping MW-4, TW4-19, MW-26 (formerly TW4-15), and TW4-20. The purpose of the pumping is to reduce total chloroform mass in the perched zone as rapidly as is practical. These wells were chosen for pumping because 1) they are located in areas of the perched zone having relatively high permeability and saturated thickness, and 2) high concentrations of chloroform were detected at these locations. The relatively high transmissivity of the perched zone in the vicinity of the pumping wells results in the wells having a relatively high productivity. The combination of relatively high productivity and high chloroform concentrations allows a high rate of chloroform mass removal.

The impact of pumping these wells is indicated by the water level contour maps attached under Tabs D and E. Cones of depression have developed in the vicinity of the pumping wells which continue to remove significant quantities of chloroform from the perched zone. The water level contour maps indicate that effective capture of water containing high chloroform concentrations in the vicinity of the pumping wells is occurring. As noted in Section 3.1.2, little change in measured water levels occurred between the first quarter, 2007 and the previous quarter, except for the increased drawdowns at MW-26 and TW4-19, and increases in water levels at TW4-12 and TW4-13. Overall, the combined capture of TW4-19, TW4-20, MW-4 and MW-26 (TW4-15) has not changed significantly since the last quarter.

Although high chloroform concentrations exist at some locations downgradient of the pumping wells (for example, near TW4-4), the low permeability of the perched zone at these locations would prevent significant rates of chloroform mass removal should these wells be pumped. By pumping at the more productive, upgradient locations, however, the rate of downgradient chloroform migration will be diminished because of the reduction in hydraulic gradients, and natural attenuation will be more effective.

3.2. Interpretation of Analytical Results

3.2.1. Copy of Laboratory Results

Included under Tab H of this Report are copies of all laboratory analytical results for the groundwater quality samples collected under the chloroform contaminant investigation on November 8-9, 2006, along with the laboratory analytical results for a trip blank.

3.2.2. Electronic Data Files and Format

DUSA has provided to the Executive Secretary an electronic copy of all laboratory results for groundwater quality monitoring conducted under the chloroform contaminant

investigation during the Quarter, in Comma Separated Values (CSV). A copy of the transmittal e-mail is included under Tab I.

3.2.3 <u>Current Chloroform Isoconcentration Map</u>

Included under Tab J of this Report is a current chloroform isoconcentration map for the Mill site.

3.2.4 Data and Graphs Showing Chloroform Concentration Trends

Attached under Tab K is a table summarizing chloroform and nitrate values for each well over time. TW4-14 had a small amount of water just sufficient for sampling (see the discussion in Section 2.1.1 above)

Attached under Tab L are graphs showing chloroform concentration trends in each monitor well over time. As TW4-14 was previously dry, a trend graph for that well has not been included.

3.2.5 Analysis of Analytical Results

Comparing the analytical results to those of the previous quarter, as summarized in the table included under Tab K, the following observations can be made:

- a) Chloroform concentrations have increased by more than 20% in the following wells, compared to last quarter: MW-26 (TW4-15) and TW4-22.
- b) Chloroform concentrations have decreased by more than 20% in the following wells, compared to last quarter: TW4-5, TW4-16, TW4-18, and TW4-20;
- c) Chloroform concentrations have remained within 20% in the following wells compared to last quarter: MW-4, TW-4-1, TW4-2, TW4-4, TW4-6, TW4-7, TW4-10, TW4-11, TW4-19 and TW4-21;
- d) Chloroform concentrations at TW4-8 increased from non-detect to 2.5µg/L; and
- e) TW4-3, TW4-9, TW4-12, TW4-13, TW4-14, and MW-32 (TW4-17) remained non-detect.

In addition, the chloroform concentration in well TW4-20 decreased from 11,000 μ g/L in the fourth quarter 2006 to 4,400 μ g/L in the first quarter 2007 and the concentration in MW-26 (TW4-15) increased from 282 μ g/L in the fourth quarter 2006 to 570 μ g/L in the first quarter 2007. Chloroform concentrations in TW4-6, which is the most downgradient temporary perched well, increased slightly from 43 to 46 μ g/L. This slight increase in concentration is consistent with continued slow rates of downgradient chloroform migration. Chloroform migration rates in this area are slow due to low permeability conditions and the effects of upgradient chloroform removal by pumping.

3.3. Quality Assurance Evaluation And Data Validation

Quality assurance evaluation and data validation procedures in effect at the time of sampling were followed. These involve three basic types of evaluations: field QC checks; Analytical Laboratory checks; and checks performed by DUSA personnel, as described below.

3.3.1 Field QC Checks

Field Quality Control samples for the chloroform investigation program consist of a field duplicate sample, a field blank and a trip blank. These check samples are to be generated for each quarterly sampling episode. During the 1st Quarter of 2006 duplicates (TW4-65, duplicate of TW4-20 and TW4-70, duplicate of TW4-5), a DI blank (TW4-60) and a trip blank were collected and analyzed. The results of these analyses are included with the routine analyses under Tab H.

3.3.2 Analytical Laboratory QA/QC Procedures

The Analytical Laboratory has provided summary reports of the analytical quality assurance/quality control (QA/QC) measurements necessary to maintain conformance with NELAC certification and reporting protocol. The Analytical Laboratory QA/QC Summary Report, including copies of the Mill's Chain of Custody and Analytical Request Record forms, for the November sampling event, are included under Tab H.

3.3.3 Mill QA Manager Review

The Mill QA Manager, which, for these sampling events was DUSA's Manager of Environmental Affairs, performed four types of reviews: a determination of whether Mill sampling personnel followed Mill sampling procedures; a review of the results from the Field QC Checks; a review of analytical reports for holding times and qualifying indicators for the data; and a review of the Analytical Laboratory QA/QC analysis. The results of the QA Manager's review are discussed below.

a) Adherence to Mill Sampling SOPs

On a review of adherence by Mill personnel to the sampling procedures summarized in Section 2.2 above, the QA Manager concluded that such procedures had been followed.

b) Results From Field QC Checks

The duplicate samples of TW4-5 and TW4-20 indicated a relative percent difference above the prescribed standard of 20%. More specifically, the results of TW4-5 and its

duplicate MW-70 exhibited an RPD of -113.8% for chloroform and -91.2% for carbon tetrachloride. TW4-20 and its duplicate MW-65 indicated an RPD of -21.6%, slightly out of tolerance for this QA parameter. Upon reanalysis, the results of analysis were similar to the first analytical determination. In addition, both the DI Blank and Risate samples indicated some presence of chloroform.

In response to these conditions, the QA Manager has investigated possible causes of these Quality Assurance anomalies. The areas of inquiry have included possible sources of chloroform from the DI distribution system and methods of sample duplication. As a result of these discussions, the following actions are under consideration:

- Eliminating the receipt of chlorinated water to the DI ion-exchange cylinder.
- Providing carbon filtration as a polishing (final) step in the DI water generation process.
- Developing a VOC duplicate sampling plan which ensures the collection of a single homogeneous sample into one common container from which duplicate splits are distributed for analytical purposes. The duplicate method is designed to accomplish this same end result but may be improved upon. Any modification in this procedure will be provided to UDEQ for review and concurrence.
- c) Review of Analytical Laboratory QA/QC Analysis and Analytical Reports

The QA Manager reviewed the Analytical Laboratory's QA/QC Summary Reports and made the following conclusions;

(i) Check samples were analyzed for each method used in analyzing the Chloroform investigation samples. These methods were:

Parameter	Method
Nitrogen, (Nitrate + Nitrite as N)	E353.2
Chloroform,	E624
Carbon tetrachloride	E624
Chloromethane	E624
Methylene chloride	E624
Chloride	A4500-CL B

- (ii) The check samples included at least the following: a method blank, a laboratory control spike (sample), a matrix spike and a matrix spike duplicate;
- (iii) All qualifiers, if any, and the corresponding explanations in the summary reports are reviewed by the QA Manager. The only qualifiers reported were for matrix interference in some of the analyzed monitoring location samples, however, the reporting limit was maintained below the parameter standard in these instances.

(iv) The laboratory holding time for all analyses was within chloroform specification and sample temperature was acceptable upon receipt.

4. LONG TERM PUMP TEST AT MW-4, TW4-15 (MW-26), TW4-19 AND TW4-20, OPERATIONS REPORT

4.1. Introduction

As a part of the investigation of chloroform contamination at the Mill site, IUSA has been conducting a Long Term Pump Test on MW-4, TW4-19, TW4-15 (MW-26) and TW4-20. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation. The following information documents the operational activities during the Quarter.

4.2. Pump Test Data Collection

The long term pump test for MW-4 was started on April 14, 2003, followed by the start of pumping from TW4-19 on April 30, 2003, from TW4-15 (MW-26) on August 8, 2003 and from TW4-20 on August 4, 2005. Personnel from Hydro Geo Chem, Inc. were on site to conduct the first phase of the pump test and collect the initial two days of monitoring data for MW-4. IUSA personnel have gathered subsequent water level and pumping data.

Analyses of hydraulic parameters and discussions of perched zone hydrogeology near MW-4 has been provided by Hydro Geo Chem in a separate report, dated November 12, 2001, and in the May 26, 2004 Final Report on the Long Term Pumping Test.

Data collected during the Quarter included the following:

- a) Measurement of water levels at MW-4, TW4-19, TW4-15 (MW-26), and TW4-20 on a weekly basis, and at selected temporary wells and permanent monitoring wells on a monthly basis (See Section 3.1 and Tabs B and C for a discussion of the water levels);
- b) Measurement of pumping history:
 - (i) pumping rates
 - (ii) total pumped volume
 - (iii) operational and non-operational periods;
- c) Periodic sampling of pumped water for chloroform and nitrate & nitrite analysis and other constituents, as discussed in detail in Section 3.2 above.

4.3. Water Level Measurements

Beginning August 16, 2003, the frequency of water level measurements from MW-4, TW4-15 (MW-26), and TW4-19 was reduced to weekly. From commencement of pumping TW4-20, water levels in that well have been measured weekly. Depth to groundwater in all other chloroform contaminant investigation wells is monitored monthly. Copies of the weekly Depth to Water monitoring sheets for MW-4, TW4-15 (MW-26), TW4-19 and TW4-20 and the October and December monthly Depth to Water monitoring sheets for all of the chloroform contaminant investigation wells are included under Tab C. Monthly depth to water measurements for November are recorded in the Field Data Worksheets included under Tab B.

4.4. Pumping Rates and Volumes

4.4.1. MW-4

Approximately 81,230 gallons of water were pumped from MW-4 during the Quarter. The average pumping rate from MW-4, when the pump was pumping, was approximately 4.0 gpm throughout the Quarter. The well is not purging continuously, but is on a delay device. The well purges for a set amount of time and then shuts off to allow the well to recharge. Water from MW-4 was transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. At the end of the 1st Quarter, 2007, and since commencement of pumping on April 14, 2003, an estimated total of approximately 1,307,110 gallons of water have been purged from MW-4.

4.4.2. TW4-19

Approximately 605,400 gallons of water were pumped from TW4-19 during the Quarter. The average pumping rate from TW4-19, when the pump was pumping, was approximately 6.0 gpm throughout the Quarter. The pump in this well is operating on a delay. It pumps for approximately one and a half minutes and then is off for two to three minutes. Water from TW4-19 was directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. At the end of the 1st Quarter, 2007, and since commencement of pumping on April 30, 2003, an estimated total of approximately 6,768,986 gallons of water have been purged from TW4-19.

4.4.3. TW4-15 (MW-26)

Approximately 54,400 gallons of water were pumped from TW4-15 (MW-26) during the Quarter. The average flow rate from TW4-15, when the pump was pumping, was approximately 1.5 gpm throughout the Quarter. The well is not purging continuously, but is on a delay device. The well now purges for a set amount of time and then shuts off to allow the well to recharge. The water is directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. At the end of the 1st Quarter, 2006, and since commencement of pumping on August 8, 2003, an estimated total of approximately 930,510 gallons of water have been purged from TW4-15.

4.4.4. TW4-20

Approximately 163,520 gallons of water were pumped from TW4-20 during the Quarter. The average flow rate from TW4-20, when the pump was pumping, was approximately 6.0 gpm throughout the Quarter. The well is not purging continuously but is on a delay device. The well pump is set on a water elevation device. When the water reaches a set point, the pump turns on until the water level drops to another set point. The water is directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. Since commencement of pumping on August 4, 2005, an estimated total of approximately 642,290 gallons of water have been purged from TW4-20.

4.5 Daily Inspections

Denison has submitted an *Operations and Maintenance Plan, Chloroform Pumping System, White Mesa Mill, Blanding, Utah*, Revision 1.0 to UDEQ for approval. Upon approval of that plan, the Mill will commence documenting its daily inspections of the operational status of the chloroform pumping wells on the daily inspection form, an example of the form of which is attached as Tab M.

4.6 Operational Problems

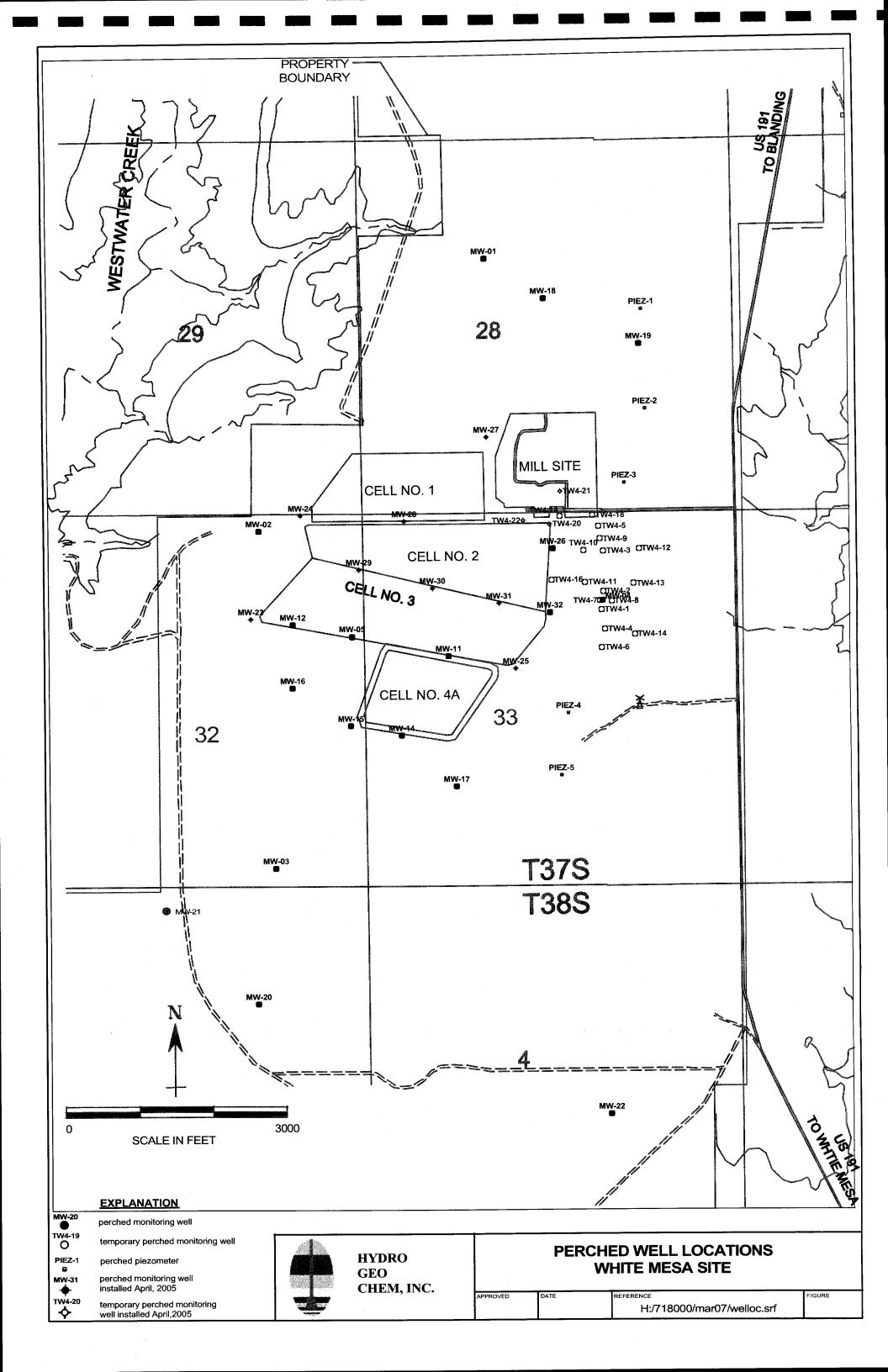
Operational problems experienced during the 1th Quarter of 2007 included:

- a) A flow meter was replaced on well TW-4-20 (3-21-07) and four replacements of the flow meters on well TW4-16 were necessary (January 9, January 22, February 26 and March 26, 2007). Well TW4-16 continued to experience sedimentation problems during this reporting period.
- b) The line, pump and flow meter on TW4-15 (MW26) on January 29, 2007 were found frozen due to extremely cold temperatures. The well was back on and pumping on February 19, 2007.

4.7 Conditions That May Affect Water Levels in Piezometers

No water was added to any of the three wildlife diversion ponds during the Quarter.

4.8 Chloroform Analysis


Monthly chloroform sampling ceased on November 8, 2003. From that time all chloroform contaminant investigation wells were sampled on a quarterly basis. During the Quarter, samples from MW-4, TW4-19, TW4-15 (MW-26) and TW4-20 were taken from a small valve and tee placed in the discharge line downstream from the pump control valve for each well. The sample results are discussed above in Section 3.2.

5. CONCLUSIONS AND RECOMMENDATIONS

The water level contour map for the Quarter indicates that effective capture of water containing high chloroform concentrations in the vicinity of the pumping wells is occurring.

The chloroform concentration in temporary well TW4-20 decreased from 11,000 μ g/L to 4,400 ug/L between the fourth quarter of 2006 and the first quarter of 2007. This fluctuation in concentration is likely related to variations in pumping in this well and nearby wells, and its location immediately downgradient of the suspected former office leach field source area. The increase in chloroform in MW-26 (TW4-15) from 282 to 570 μ g/L between the fourth quarter of 2006 and the first quarter of 2007 is also likely related to changes in pumping rates and its location close to the suspected source area. Regardless of these measured fluctuations in chloroform concentrations, pumping these wells helps to reduce downgradient chloroform migration by removing chloroform mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued pumping of wells that are currently pumping is recommended.

The slight increase in chloroform concentrations at downgradient well TW4-6 from 43 to $46 \,\mu g/L$ is consistent with the generally slow migration of chloroform to the south in this area. Migration rates in this area are low primarily due to low-permeability conditions, although the overall rate of chloroform migration is also slowed by pumping at the upgradient locations.

Mill – Groundwater Discharge Permit Groundwater Monitoring

Quality Assurance Plan (QAP)

Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKSE	EET FOR GROUND WATER PUISING EVENT
Location (well name) MW-L	Name and initials Charles Oruh Don'e l Oruh Mowe
Date and Time for Purging 2/27/07 and	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 124
Depth to Water-Before Purging 76.43	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Page 41 of 41

Groundwater Monitoring Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Fie	ld Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuate	ed (if other than two)
If well evacuated to dryness, number	er of gallons evacuated
Name of Certified Analytical Labor	atory if Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	YN	100 ml	YN	H ₂ SO ₄ Y N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	YN	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N	YN
				If a preservative is used, Specify Type and Quantity of Preservative:

Comments	Conti	NUBUS	DVMDL	10	well-	Char	les_
Orin	DIESENT	Weath	et is e	<u>1019 -</u>	DIEEZY-	cloudy	7
Took 1	present. Jell dept	h - left	Site	at C	<u> </u>		
Meter	<u>- 08650</u> ;	20	Flow Ra	ie '	4,5 gpm		
	·				J.		

Continuous pumping Well

Mill – Groundwater Discharge Permit Groundwater Monitoring

Quality Assurance Plan (QAP)

Date: 11.17.06 Revision: 1

Page 40 of 41

Description of Sampling Event: Warter & Chorolom Pursing Event				
Description of Sampling Event: (Warte	rly Chlorodoin Purging Even +			
Location (well name) TW4-6	Sampler Name and initials Danie Mower			
Date and Time for Purging 2/27/67 and	Charles Orvind Sampling (if different)			
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Grand-05			
Sampling Event	Prev. Well Sampled in Sampling Event TW4-16			
pH Buffer 7.0 7. 0	pH Buffer 4.0 4.0			
Specific Conductance 10,900 uMHOS/cm	Well Depth 100			
Depth to Water Before Purging 74.69	Casing Volume (V) 4" Well: <u>(6.5.2</u> (.653h) 3" Well: (.367h)			
Conductance (avg)	pH of Water (avg)			
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity			
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)			
Time: 1244 Gal. Purged 12	Time: Gal. Purged			
Conductance 4097	Conductance			
рН <u> 10.88</u>	pH			
Temperature 56.4	Temperature			
Redox Potential (Eh) 37.5	Redox Potential (Eh)			
Turbidity	Turbidity			
Time: Gal. Purged	Time: Gal. Purged			
Conductance	Conductance			
pH	pH			
Temperature	Temperature			
Redox Potential (Eh)	Redox Potential (Eh)			

Mill – Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSE	erly Chlorotorm Purging Event
Description of Sampling Event. Cook 14-	Sampler
Location (well name) MW-L	Sampler Name and initials Charles Oruh Don'e leven Mowe
Date and Time for Purging 2/27/07 and	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 124/
Depth to Water-Before Purging 76.43	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Page 41 of 41

Turbidity	Turbidity			
Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation				
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $			
Number of casing volumes evacuated (if other than two)				
If well evacuated to dryness, number of gallons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	YN
				If a preservative is used, Specify Type and Quantity of Preservative:

Comments	Continu present. W Sell depth-	ous Dum	pine	well-(Charles
Orin	oresent . W	eather is	cold	- Dreezy-	cloudie.
Took i	Jell death -	- left Sit	e at	0725	
Meter +	- 0865020	Flow	Rate	4,5 gpm	
	•			J	

Continuous pumping Well

Mill – Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKSH	rly Chloroform Pursing Event
Location (well name) 1 W 4 - H	Name and initials Daniel Mower Charles Oruh
Date and Time for Purging 2/27/07 and	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth 102
Depth to Water Before Purging 77.01	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation	·			
Flow Rate (Q), in gpm.	Time to evacuate two casing volumes (2V)			
S/60 = =	T = 2V/Q =			
Number of casing volumes evacuated (if other than two)				
If well evacuated to dryness, number of gallons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	YN		YN	~~~~
		100 ml		4
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non-	YN	250 ml	Y N	No Preservative Added
Radiologics				
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N	Y N
				If a preservative is used, Specify Type and Quantity of Preservative:

Comments _	\mathcal{T}_{i}	ed	with	MI	N-4	- C	harles	Orvin	_
DIESEN+.	Cold	over	ast to	cloud	r - hre	czv.			
Took	deo th	Q+	0703	je (}	Site,				
									_
									_
								1.00	_

Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKSĮ	HEET FOR GROUND WATER,
Description of Sampling Event:	form Glasterly Sampling
Location (well name) TW4-A	Name and initials Daniel Mover
Date and Time for Purgingan	d Sampling (if different) 2/28/07
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event St qualter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Parameters are Measured					
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $				
Number of casing volumes evacuated (if oth	er than two)				
If well evacuated to dryness, number of galle	ons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	(Y) N	3x40 ml	Y (N)	HCL N
Nutrients	(Y) N	100 ml	Y (N)	H_2SO_4 \bigcirc N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Inoscanic Chloride	Ø n	Sample volume	Y 🐧	Y If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived	on Site 1546 present. Weather	Daniel Mower love	î
Charles Orvin	present. Weather	is Cold-wendy-Cloud	ŀΥ
Very-Cloudy Th	s' is a Sampling Samples taken	event only via	•
use of bailer.	Samples taken	1550.	
		-eft Site 1955	

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA-WORKSE	REET FOR GROUND WATER
Description of Sampling Event: Walter	Ty Chloroform Purging Event
Location (well name) TW4-1	Name and initials Daniel Mower Charles Orun
Date and Time for Purging 2/27/07 and	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Grand fos
Sampling Event	Prev. Well Sampled in Sampling Event 4-7
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific Conductance 10, 900 uMHOS/cm	Well Depth
Depth to Water Before Purging 64.23	Casing Volume (V) 4" Well: 30.54 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1253 Gal. Purged 12	Time: Gal. Purged
Conductance 2348	Conductance
рн 6.97	pH
Temperature 56.	Temperature
Redox Potential (Eh) 163	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill – Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Par	rameters are Measured
Pumping Rate Calculation	
6.0 Flow Rate (Q), in gpm. S/60 = = 10.16	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underbrace{Cl. OS}_{i}$
Number of casing volumes evacuated (if	other than two)
If well evacuated to dryness, number of ga	allons evacuated
Name of Certified Analytical Laboratory	if Other Than Energy Labs

Type of Sample	Ta	ople ken cle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y	N	3x40 ml	Y N	HCL Y N
Nutrients	Y	N	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y	N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y	N	250 ml	Y N	No Preservative Added
Gross Alpha	Y	N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y	N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived on	5, te 148	- Daniel Ma	ower .
	ent. Weather		1251 ended
at 1301. Water is	Very cloudy		ment no dor
	Left site	at 1304	
No. of the second secon			

Mill – Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 11.17.06 Revision: 1

Page 40 of 41

Perceptation of Sampling Event:	EET FOR CROUND WATER
Location (well name) TWI-1	Sampler Name and initials Daniel Mover
Date and Time for Purging and	Charles Char
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event St quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

	· ·
Turbidity	Turbidity
Volume of Water Purged When Field Parameter	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other the	nan two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Othe	er Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs Nutrients	(Y) N	3x40 ml 100 ml	Y (N) Y (D)	HCL Ø N H ₂ SO ₄ Ø N
Heavy Metals	YN	250 ml	YN	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N
Other (specify) Thorganic Chloride	Ø n	Sample volume	Y (5)	Y If a preservative is used, Specify Type and Quantity of Preservative:

Comment	A	rived	<u>On</u>	Sin	e 1515 Weather	. Da	nie)	Mower
Char	es	Orvin	Drese	nta	Weathe	r is Ox	sercast	<u>cold</u>
Wen	9 X 0	, this	<u>۔ دنہ 'خ</u>	۹	Samplia	s even-	t only	* Nie
use	0,4	bailer.	Sam	ples	Samplia taken	1518		<u></u>
				-		1061 0	40 15	21
						<u> </u>	51 . 1 6 PV	

Redox Potential (Eh)_____

Quality Assurance Plan (QAP)

Date: 11.17.06 Revision: 1

ATTACHMENT 1

Page 40 of 41

WHITE MES.	A URANIUM MILL
Description of Sampling Event: Wasterl	Y Chlorotorm Pursing Event
Location (well name) TW4-2	Name and initials Danie Mower
Date and Time for Purging $2/27/07$ and	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Crund du
Sampling Event	Prev. Well Sampled in Sampling Event 4-4
pH Buffer 7.0	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 121.13
Depth to Water Before Purging 71.83	3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)
Time: 530 Gal. Purged 2	Time: Gal. Purged
Conductance 2,598	Conductance
pH_ <u>U.93</u>	pH
Temperature 56.	Temperature
Redox Potential (Eh) 351	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature

Redox Potential (Eh)_

Mill – Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

	Turbidity	Turbidity
	Volume of Water Purged When Field Parameter	ers are Measured
	Pumping Rate Calculation	
6.0	Flow Rate (Q), in gpm. $S/60 = -\frac{10.72}{}$	Time to evacuate two casing volumes (2V) $T = 2V/Q = 67.37$
	Number of casing volumes evacuated (if other t	han two)
	If well evacuated to dryness, number of gallons	evacuated
	Name of Certified Analytical Laboratory if Oth	er Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	YN	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived on site 1524 Daniel Mower	
Charles Orvin present. Weather is Very Windy-Very Cloudy-Cod This is a purgue event only. Purge began at 1528 ended	ľ
at 1539. Water is Clear to Sight - Heavy sand - no odor	
1-64+ Site 6.7 1372	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	HEET FORGROUND WATER
Description of Sampling Event:	torm Obsiterly Sampling
Location (well name) TW4-2	Name and initials Daniel Mover Charles Orum
Date and Time for Purgingan	d Sampling (if different) 2/28/07
L	Well Pump (if other than Bennet)
Sampling Event 5+ qualter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	Amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation				
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $			
Number of casing volumes evacuate	ed (if other than two)			
If well evacuated to dryness, numbe	r of gallons evacuated			
Name of Certified Analytical Labor	atory if Other Than Energy Labs			

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Ø N	3x40 ml	Y (N)	HCL Ø N
Nutrients	<u>(Y)</u> N	100 ml	Y (N)	H ₂ SO ₄ Ø N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N
Other (specify) Inoganic Chloride	Ø n	Sample volume 350m	Y 🐧	Y 🔊 If a preservative is used, Specify Type and Quantity of Preservative:

mer
id
ria

Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKSE	HEET FOR GROUND WATER
Description of Sampling Event: Quartly	Sampler D Margins Even +
Location (well name) TW4-3	Name and initials Danie Mower Charles Orvin
Date and Time for Purging 2/27/07 07:25 and	d Sampling (if different)
Well Purging Equip Used: vpump or bailer	Well Pump (if other than Bennet) C-fund for
Sampling Event	Prev. Well Sampled in Sampling Event 1
	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth
Depth to Water Before Purging 48.88	Casing Volume (V) 4" Well: <u>\$3.38</u> (.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: <u>0921</u> Gal. Purged 2	Time: Gal. Purged
Conductance 2496	Conductance
pH6.80	pH
Temperature 56. 7	Temperature
Redox Potential (Eh) 420	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

 ${\bf Mill-Groundwater\ Discharge\ Permit}$

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Para	meters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = = 6.0 (1.12	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{66.72}{}$
Number of casing volumes evacuated (if ot	her than two)
If well evacuated to dryness, number of gal	lons evacuated
Name of Certified Analytical Laboratory if	Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)	
VOCs	Y N	3x40 ml	Y N	HCL Y N	
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N	
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N	
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added	
Gross Alpha	Y N	1,000 ml	YN	H ₂ SO ₄ Y N	
Other (specify)	ΥN	Sample volume	Y N	Y N	
				If a preservative is used, Specify Type and Quantity of Preservative:	

Comments ATTIVE & ON	5, te 0921	Daniel Mo	wer	1
Charles Orvin prese		is Sunny-	Clear skies-	breezy
This is a purgint ev	ent only. Purc	e becan cit	0785 ended	t
a+0936. Water is	little clouds	Small amount o	f sediment p	resent.
	Left site o	at 0940	(~

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKS	LEET FOR GROUND WATER,		
	Sampler Dustelly Sampling		
Location (well name) TW4-3	Name and initials Daniel Mover Charles Orvin		
Date and Time for Purgingan	d Sampling (if different) 2/28/07		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event St qualter	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific Conductance uMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)		
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity		
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Parameters are Measured					
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $				
Number of casing volumes evacuate	ed (if other than two)				
If well evacuated to dryness, number	er of gallons evacuated				
Name of Certified Analytical Labor	atory if Other Than Energy Labs				

Type of Sample	Sample Sample Volume Taken (indicate if other than as specified below)		Filtered (circle)	Preservative Added (circle)
VOCs	Фи	3x40 ml	Y (N)	HCL N N
Nutrients	Y N	100 ml 250 ml	Y (N) Y N	H ₂ SO ₄ Ø N HNO ₃ Y N
Heavy Metals All Other Non-Radiologics	Y N Y N	250 ml	YN	No Preservative Added
Gross Alpha	YN	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Inorganic Chloride	Ø n	Sample volume	Y ()	Y S If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived on Si Charles Orvin present	ite 1028	Daniel	Mower	
(10004 A TINIS' IS a	Samplike	is Show on event only	Mower Ver	Ti d
use of bailer Sample	s taken 1	033.		
		eft site /	D418	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

Description of Sampling Event:	The Chloroform Purging Even-
Description of bumping Event. Quarte	Sampler
Location (well name) TW4-4	Name and initials Variet / tower
Date and Time for Purging 2/27/07 and	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Crund 105
Sampling Event	Prev. Well Sampled in Sampling Event TW4-1
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth
Depth to Water Before Purging 66.81	Casing Volume (V) 4" Well: 31.14 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time:15/1 Gal. Purged12	Time: Gal. Purged
Conductance 2709	Conductance
pH(0.71	pH
Temperature 57.0	Temperature
Redox Potential (Eh) 326	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	рН
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Par	ameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. $S/60 = \frac{6D}{10.38}$	Time to evacuate two casing volumes (2V) $T = 2V/Q = 62.26$
Number of casing volumes evacuated (if o	ther than two)
If well evacuated to dryness, number of ga	illons evacuated
Name of Certified Analytical Laboratory i	f Other Than Energy Labs

Type of Sample Taken (circle)		Taken (indicate if other (circle)		Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	YN	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N If a preservative is used,
				Specify Type and Quantity of Preservative:

Comments _/	Arrived	on sit	e 1506	- Danie	. [Mower		
Charles	Orvin	present.	Weathe	r is C	loudy- we	ndy-Cool	
This is	a Durgi	. 1	only. Pi	irge bego	in at150°	? ended	
at 1519	· Water	is Cla	r to sid	ともらく	He see	inent-no as	dor
		Le	f+ site	at 1422			
					•,		

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKS	TEET FOR GROUND WATER
Location (well name) TW4-4	Sampler Name and initials Do Ave Move (
Date and Time for Purgingand	Charles City
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event St qualter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Paday Potential (Ph)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Fiel	d Parameters are Measured
Pumping Rate Calculation	````
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated	d (if other than two)
If well evacuated to dryness, number	of gallons evacuated
Name of Certified Analytical Labora	tory if Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Ø N	3x40 ml	Y (N)	HCL N N
Nutrients Heavy Metals	Y N	100 ml 250 ml	Y (N) Y N	H ₂ SO ₄ Ø N HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N
Other (specify) Inogganic Chloride	Ø n	Sample volume	Y	If a preservative is used, Specify Type and Quantity of Preservative:

Comment	les C	red	on	Sit	e 156	13	.0	anie		Yower
Char	les C	LVIX	Drese	nt.	Wear	her	is 1	artl	y S	UNAY
bi eez	y-200/	This	5' 15	a	Same	philo	even		NX	Vic
use	of b	ailer.	Sam	<u>sples</u>	take	<u>in 1</u>	<u>528.</u>			
									· • • • • • • • • • • • • • • • • • • •	
						<u> </u>	<u>+79.</u>	<u>S146</u>	155	1

Mill – Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKSI	HEET FOR GROUND WATER
Description of Sampling Event: ()	ly Chlorafoin Purge Evend Sampler O I M
Location (well name) TW4-5	Name and initials Danie Mower Charles Orvin
Date and Time for Purging 2/27/07 and	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event	Prev. Well Sampled in Sampling Event TW4-6
pH Buffer 7.0 70	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 121.75
Depth to Water Before Purging 5489	Casing Volume (V) 4" Well: 43.65 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1257 Gal. Purged 12	Time: Gal. Purged
Conductance 22.86	Conductance
рН	pH
Temperature 57.2	Temperature
Redox Potential (Eh) 368	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

urbidityTurbidity						
Volume of Water Purged When Field Parameters are Measured						
Pumping Rate Calculation						
Flow Rate (Q), in gpm. S/60 = -6.0 14-55	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underbrace{99.31}_{}$					
Number of casing volumes evacuated (if other the	han two)					
If well evacuated to dryness, number of gallons evacuated						
Name of Certified Analytical Laboratory if Other	Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample Taken (circle)		Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	YN	100 ml	YN	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N
				If a preservative is used, Specify Type and Quantity of Preservative:

Commonts Arrived on site 1252 - Daniel Mower	
Charles Orvin present. Weather is Very Windy - Very	loudy codl
This is a puril own and a file file of home at 10 ff ended	la calinat
at 1310. Water is Clear to sight - no oder present very litt	16 ZEGIWEYL
Let+ Site at 1515	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

Description of Sampling Event:	EET FOR GROUND WATER
	Compler
Location (well name) TW4-5	Name and initials Daniel Mower Charles, Orvin
Date and Time for Purgingand	1 Sampling (if different) 2/28/07
	Well Pump (if other than Bennet)
Sampling Event 15+ Quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other the	nan two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	(Ŷ) N	3x40 ml	Y (N)	HCL YN
Nutrients	<u>(V)</u> N	100 ml	Y ((3)	H_2SO_4 (V) N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Inorganic Chloride	⊘ N	Sample volume	Y Ø	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Charles Orvin	on Site	1354.	<u>Janiel</u>	Mower
Charles Orvin	present. Wea.	ther is co	1d - we	endy_
CANERCOS+. ING	15 a Samplin	r bybrt or	ly via	<u>use</u>
of a bailer . So	males taken	1358		
		Lett	Site	1402

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	ers are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = = 60 5.50	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underbrace{33.05}_{.0.5}$
Number of casing volumes evacuated (if other	than two)
If well evacuated to dryness, number of gallons	s evacuated
Name of Certified Analytical Laboratory if Oth	ner Than Energy Labs

Type of Sample	Ta	nple ken cle)	Sample Volume (indicate if other than as specified below)	other (circle) (circle)		(indicate if other than as specified		Preservative Added (circle)
VOCs	Y	N	3x40 ml	Y	N	HCL Y N		
Nutrients	Ŷ	N	100 ml	Ÿ	N	H ₂ SO ₄ Y N		
Heavy Metals	Y	N	250 ml	Y	N	HNO ₃ Y N		
All Other Non- Radiologics	Y	N	250 ml	Y	N	No Preservative Added		
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄ Y N		
Other (specify)	Y	N	Sample volume	Y	Ň.	Y N If a preservative is used,		
						Specify Type and Quantity of Preservative:		

Comments Arrived on site 1238 - Daniel Mower Charles Orvin present. Weather is Very Very Willy Williams	
Comments ATTIVED ON Site 1230 - Vanie 1 / lower Charles Orvin present. Weather is Very Very W.	192- Clond
This is a durging event only. Turge becan out hard	CILCECT ,
at 1247. Water is \$ Very Cloudy- Section on + preson	+ - NO 090L
Left site at 1250	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	HEET FOR GROUND WATER
Description of Sampling Event: Chloro-	form Quarterly Sampling
Location (well name) TW1-6	Name and initials Daniel Mover Charles Orvi
Date and Time for Purgingan	d Sampling (if different) 2/28/07
•	Well Pump (if other than Bennet)
Sampling Event St quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity			Turbidity_				-	
Volume of Water Purge	d When	Field P	arameters are Measu	red_			-	
Pumping Rate Calculation	<u>on</u>							
Flow Rate (Q), in gpm. S/60 = =						g volumes (2V)		
Number of casing volum	ies evacu	ıated (i	f other than two)			· · · · · · · · · · · · · · · · · · ·	-	
If well evacuated to dryr	iess, nun	aber of	gallons evacuated	-			_	
Name of Certified Analy	tical Lal	oorator	y if Other Than Ener	gy La	abs		-	
Type of Sample	Sam Tak (cire	<u>cen</u>	Sample Volume (indicate if other than as specified below)	_	cered	Preservative (circle)	Add	<u>ed</u>
VOCs	(n)	N	3x40 ml	Y	(N)	HCL	0	N
Nutrients	$\overline{\aleph}$	N	100 ml	Ÿ	M	H ₂ SO ₄	8	N
Heavy Metals	Y	N	250 ml	Ŷ	N	HNO ₃	Ÿ	N
All Other Non- Radiologics	Y	N	250 ml	Ÿ	N	No Preservati		
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄	Y	N
Other (specify) Inorganic Chloride	Ø	N	Sample volume	Y	8	If a preservati Specify Type Quantity of Pr	and	used,

Comments Arrived	on Site 1256 present. Weather	Daniel Mower is Cloudy wendy-Cold
Charles Orvin	present. Weather	is Cloudy-wendy-Cold
use of bailer.	lis a Sampling Samples taken	1300.
	(164 540 1306
		LETT SITE IS DO

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKS	HEET FOR GROUND WATER
Description of Sampling Event: Waster	Chlorodorn Purging Event
Location (well name) $\frac{1}{1}$ $\frac{1}{1}$ Date and Time for Purging $\frac{1}{2}$ $\frac{1}{2}$ and	
Date and Time for Purging 2/27/07 an	d Sampling (if different)
Well Purging Equip Used: vpump or bailer	Well Pump (if other than Bennet) Cond fos
Sampling Event	Prev. Well Sampled in Sampling Event 4-10
pH Buffer 7.0 7.0	
Specific Conductance 10,900 uMHOS/cm	Well Depth 121
Depth to Water Before Purging 70.63	Casing Volume (V) 4" Well: 32.87 (.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1435 Gal. Purged 12	Time: Gal. Purged
Conductance 3406	Conductance
рН <u>7.0</u>	рН
Temperature 56.6	Temperature
Redox Potential (Eh) 254	Redox Potential (Eh)
Turbidity	Turbidity
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity		Turbidity_		
Volume of Water Purgeo	l When Field P	arameters are Measu	red	
Pumping Rate Calculation	<u>on</u>			
Flow Rate (Q), in gpm. S/60 = = 10	296	Time to eva $T = 2V/Q =$	cuate two casing vo	plumes (2V)
Number of casing volume	es evacuated (ii	f other than two)		
If well evacuated to dryn	ess, number of	gallons evacuated		
Name of Certified Analy	tical Laboratory	y if Other Than Ener	gy Labs	
Type of Sample	Sample	Sample Volume	<u>Filtered</u>	Preservative Added
	<u>Taken</u> (circle)	(indicate if other than as specified below)	(circle)	(circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N	YN
				If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived Charles Orvin	on 5, te 142	9 Danie	el Mower	
Charles Orvin	present. Wea	ther is w	indy - cloudy -	- (00/
This is a pursin	<i>!</i>	. Purge bec		rged,
a+1443. Water-	is Clear is	ith Sand pre	sent - no odor	
	F6++ 3	site at 184	6	***************************************
			· · · · · · · · · · · · · · · · · · ·	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	HEET FOR GROUND WATER
Description of Sampling Event:	form Quarterly Sampling
Location (well name) TW4-7	Name and initials Daniel Mover Charles Orvin
Date and Time for Purgingan	d Sampling (if different) 2/28/07
4	Well Pump (if other than Bennet)
Sampling Event 5+ quaiter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	Amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal, Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity		
Volume of Water Purged When Field Parameters are Measured			
Pumping Rate Calculation			
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $		
Number of casing volumes evacuated (if other than two)			
If well evacuated to dryness, number of gallons evacuated			
Name of Certified Analytical Laboratory if Other Than Energy Labs			

Type of Sample	Sampl Taken (circle	(indicate if other	Filtered (circle)	Preservative Added (circle)
VOCs	Ø N		Y (N)	HCL Ø N
Nutrients	<u>(Y)</u> N	100 ml	Y (N)	H_2SO_4 \bigcirc N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Adde
Gross Alpha	Y	1,000 ml	YN	H ₂ SO ₄ Y N
Other (specify)	Ø N	Sample volume 250m	Y 🐧	Y N If a preservative is use Specify Type and Quantity of Preservative

Comments Arrived	on Site 1455	Daniel Mower is Partly Sunny-Cold event only via
Charles Orvin	present. Weather	is Partly Sunny-Cold
Lendy · cloudy This	Samples taken 1	event only via
use of baller.	Samples taken 1	500,
	L	eft site 1512

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSI	HEET FOR GROUND WATER
Description of Sampling Event: War ser	ly Chloration perge Event
Location (Well name) / W / O	Name and indiais Court 1
Date and Time for Purging 2/27/07 1042 and	d Sampling (if different)
Well Purging Equip Used: vpump or _bailer	Well Pump (if other than Bennet) Crund 405
Sampling Event	Prev. Well Sampled in Sampling Event TWH-C
	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 126
	Casing Volume (V) 4" Well: 36.37 (.653h) 3" Well: (.367h)
Conductance (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1044 Gal. Purged 12	Time: Gal. Purged
Conductance 3345	Conductance
pH7.10	pH
Temperature 56.9	Temperature
Redox Potential (Eh) 195	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation				
Flow Rate (Q), in gpm. S/60 = -6.0 12.12	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{75.75}{}$			
Number of casing volumes evacuated (if other than two)				
If well evacuated to dryness, number of gallons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	YN	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived on site 1038 Daniel Mower Charles Orun present. Weather is Cloudy-wendy-cool This is a pursuit event only. Purge began at 1042 ended at 1054. Water is Cloudy-sediment is very present-no odor pre	esen-f
Left site at 1059	

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSE	form Charterly Sampling
Description of Sampling Event:	form Outsiterly sampling
Location (well name) TW4-8	Name and initials Daniel Mover Charles Orum
Date and Time for Purgingan	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event St quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal, Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other th	nan two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Othe	r Than Energy Labs

Type of Sample	Sam Tak (circ	<u>cen</u>	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)		Preservative Added (circle)		
VOCs	(D)	N	3x40 ml	Y	(N)	HCL	Ø N	
Nutrients	(Y)	N	100 ml	Y	N	H ₂ SO ₄	Ø N	
Heavy Metals	Ŷ	N	250 ml	Y	N	HNO ₃	Y N	
All Other Non- Radiologics	Y	N	250 ml	Y	N	No Preser	vative Added	
Gross Alpha	Y	N	1,000 mi	Ý	N	H ₂ SO ₄	ΥN	
Other (specify) Inoganic Chloride	Ø	N	Sample volume	Y	S	Specify Ty	vative is used, vpe and f Preservative:	

Commen	ts A	rrived	ON S	Site	1217	_ [<u>Janie</u>	1 1	lower Spow	
Char	les	Orvis	Dresen	t. W	eathe	r 15	Cold	and	SIUW	π
			hist is a	<u> </u>	zmpli)	is ev	ent c	DV X	Nice	
use	70	barle	r. Samp	les -	tallen	Total	Le .			
	······································							175	7;	
						<u> </u>	2:46	املما	7	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

ATTACHMENT 1
WHITE MESA URANIUM MILL

FIELD DATA-WORKSF	EET FOR GROUND WATER
Description of Sampling Event: Charter	ly Chlorotorn Purge Event
Location (well name) TW4-9	Sampler Name and initials Daniel Mower Charles Orvin
Date and Time for Purgingand	1 Sampring (11 differenc)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Grand To
Sampling Event	Prev. Well Sampled in Sampling Event TW4-17
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 121,33'
Depth to Water Before Purging 52,92	Casing Volume (V) 4" Well: 44.67 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 10/7 Gal. Purged 12	Time: Gal. Purged
Conductance 26 70	Conductance
pH	pH
Temperature 56.5	Temperature
Redox Potential (Eh) 170	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Reday Potential (Fh)	Redox Potential (Eh)

ORP-170

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity								
Volume of Water Purged When Field Parameters are Measured									
Pumping Rate Calculation									
Flow Rate (Q), in spm. $S/60 = -\frac{60}{14.89}$	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underbrace{89.39}_{}$								
Number of casing volumes evacuated (if other t	han two)								
If well evacuated to dryness, number of gallons evacuated									
Name of Certified Analytical Laboratory if Other Than Energy Labs									

Type of Sample		Tal	o <u>ple</u> ken cle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)		Preservat (circle)	Preservative Added (circle)		
VOCs		Y	N	3x40 ml	Y	N	HCL	Y	N	
Nutrients		Y	N	100 ml	Y	N	H ₂ SO ₄	Y	N	
Heavy Metals		Y	N	250 ml	Y	N	HNO ₃	Y	N	
	on-	Y	N	250 ml	Y	N	No Preserv	ative A	ided	
Gross Alpha		Y	N	1,000 ml	Y	N	H ₂ SO ₄	Y	N	
Other (specify)		Y	N	Sample volume	Y	N .	YN			
							If a preserv Specify Ty Quantity o	pe and		
	-									

Comments	Arri	red	on.	5, fe	011		<u>Janie</u>	IM	ower		ı	Ċ.
<u>Charle</u>	s ()	rv.h	preser	+- 1	VCa.+	her	15 W	lindy	- Coo	1-Pa(+	(7	200 VY
This	ડૂ વ	purgin	eve	×+ 0	nly.	Purge	<u>bega</u>	<u>n ai</u>	トルクロ	evaea	•	r
<u>a+103</u>	2. h	later .	15 (budy	<u>-' >q</u>	briment	ر کور <u>-</u>	ያየተያቀሲብ መማ	- Na 9	Nor		
, <u>"</u>				F64+	Sit	e at	- 10:	<u>عر</u> د				
								٠,				

Quality Assurance Plan (QAP)

Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKS	HEET FOR GROUND WATER
Description of Sampling Event	form Charterly Sampling
Location (well name) TW4-9	Name and initials Daniel Mover
Date and Time for Purgingand	Charles Orvion alaston
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event 5+ qualter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH ₁	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Fie	ld Parameters are Measured
Pumping Rate Calculation	F
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuate	ed (if other than two)
If well evacuated to dryness, numbe	er of gallons evacuated
Name of Certified Analytical Labor	atory if Other Than Energy Labs

Type of Sample	e of Sample Sample Vo Taken (indicate if (circle) than as spending below)			Preservative Added (circle)
VOCs	Ø N	3x40 ml	Y (N)	HCL N H ₂ SO ₄ N
Nutrients Heavy Metals	Y N Y N	100 ml 250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Ý N	H ₂ SO ₄ Y N
Other (specify) Thorsanic Chloride	(A) N	Sample volume 250 m	Y (3)	If a preservative is used, Specify Type and Quantity of Preservative:

Comments	Arrived	on s	Site	1205 Weath	5 .	Danie	<u> </u>	<u>Mower</u>
Charles	Orvin	Dresen	+ 1	Weath	er is	Show	<u>πχ ~ i</u>	windy
Cold .	ナルゴル	<u>s' i's c</u>		Sampli		iev+	OKLY	Vice
use of	r bailer.	Samp	<u>les</u>	taken	120	8-		
		· · · · · · · · · · · · · · · · · · ·					: 7	
					Let.	Site	2 3	人

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA-WORKSI	HEET FOR GROUND WATER
Description of Sampling Event: Was ter	Ty Chloroform Purge Event
Location (well name) TW4-10	Name and initials Danie Mower
Date and Time for Purging 2/27/07 and	charles Orvind d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Crund fos
Sampling Event	Prev. Well Sampled in Sampling Event Tw4-22
pH Buffer 7.0 <u>7.0</u>	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 113
Depth to Water Before Purging 55.81	Casing Volume (V) 4" Well: (.653h) 37, 34
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1312 Gal. Purged 12	Time: Gal. Purged
Time. 1312 Gai. Fuigeu 12	Time. Gai. Tuigeu
Conductance 2760	Conductance
рн 6.52	pH
Temperature 1000 57.0	Temperature
Redox Potential (Eh) 40 1	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged_	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	rs are Measured
Pumping Rate Calculation	1
Flow Rate (Q), in gpm. S/60 = = 12. 44	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{1}{1} $
Number of casing volumes evacuated (if other th	nan two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	r Than Energy Labs

Type of Sample	Ta	n <u>ple</u> ken cle)	Sample Volume (indicate if other than as specified below)		tered cle)	Preservati (circle)	ve Added
VOCs	Y	N	3x40 ml	Y	N	HCL	Y N
Nutrients	Ÿ	N	100 ml	Ŷ	N	H ₂ SO ₄	YN
Heavy Metals	Y	N	250 ml	Y	N	HNO ₃	YN
All Other Non- Radiologics	Y	N	250 ml	Y	N	No Preserva	tive Added
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄	YN
Other (specify)	Y	N	Sample volume	Y	N	YN	
						Specify Typ	tive is used, e and Preservative:

Comments Arrived on	site 1306 Daniel	Mover
Charles Orvin present This is a pursuit ever	t. Weather is Very	Mower Windy-Very Cool-Cloud at 1310 ended
at 1323. Water is C	ear to Sight- very litt	le Sediment-nooder present
	Left site at 1425	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	LEET FOR GROUND WATER,
Description of Sampling Event:	form Charterly Sampling
Location (well name) TW4-10	Name and initials Daniel Mover Charles Orvi
Date and Time for Purgingan	d Sampling (if different) 2/28/07
	Well Pump (if other than Bennet)
Sampling Event S+ quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other the	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample			Filtered (circle)	Preservative Added (circle)	
VOCs	Ø N	3x40 ml	Y (N)	HCL Ø N	
Nutrients	(Y) N	100 ml	Y (N)	H ₂ SO ₄ Ø N	
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N	
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added	
Gross Alpha	YN	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N	
Other (specify) Tronganic Chloride	Ø n	Sample volume	Y	If a preservative is used, Specify Type and Quantity of Preservative:	

Comments A	rived	on S	Site 14	41	. Dan	ie) _	Mower
Charles	Orvin	Dresent	- Wea	ther	is Col	- Ueig	wendy
Cloudy	This	s' is c	Sam	mila	event	only	Via
use 6f	bailer.	Samp	es +a	iplias	145,		
		- (
					eft si	te 14.	50

Date: 11.17.06 Revision: 1

Groundwater Monitoring Quality Assurance Plan (QAP)

Redox Potential (Eh)

Page 40 of 41

FIELD DATA WORKSI	HEET FOR GROUND WATER
Description of Sampling Event:	Sampler O Marging Event
Location (well name) TW4-1 Date and Time for Purging 2/27/07 and	Name and initials Danie Mower
Date and Time for Purging 2/27/07 an	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Crun defos
Sampling Event	Prev. Well Sampled in Sampling Event TW4-2
pH Buffer 7.0 7.0	
Specific Conductance 10,900 uMHOS/cm	Well Depth/OO_/
Depth to Water Before Purging 65.70	Casing Volume (V) 4" Well: 22.39 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1552 Gal. Purged 12	Time: Gal. Purged
Conductance 4274	Conductance
pH [g.S]	pH
Temperature 55.6	Temperature
Redox Potential (Eh) 376	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH·	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = -7.46	Time to evacuate two casing volumes (2V) $T = 2V/Q = 44.779$
Number of casing volumes evacuated (if other t	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)	
VOCs	Y N	3x40 ml	Y N	HCL Y N	
Nutrients	Y N	100 ml	YN	H ₂ SO ₄ Y N	
Heavy Metals	Y N	250 ml	YN	HNO ₃ Y N	
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added	
Gross Alpha	YN	1,000 mi	Y N	H ₂ SO ₄ Y N	
Other (specify)	YN	Sample volume	YN	Y N	
				If a preservative is used, Specify Type and Quantity of Preservative:	

Comments Arrived on site 1546 Daniel Mower Charles Druin present. Weather is Cool-Cloudy-Windy
Charles Orvin present. Weather is Cool-Cloudy-Windy. This is a pursing event only. Purge becan at 1550 ended
This is a purging event only. Purge began at 1550 ended
at 155%. Water is
Left site at 1605

Date: 11.17.06 Revision: 1

Groundwater Monitoring Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	HEET FORGROUND WATER,		
Description of Sampling Event:	torm Glasterly Sampling		
Location (well name) TW4-11	Name and initials Daniel Mover Charles Orvin		
Date and Time for Purgingan	d Sampling (if different) 2/28/07		
	Weil Pump (if other than Bennet)		
Sampling Event St qualter	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific Conductance uMHOS/cm	Well Depth		
Depth to Water Before Purging	3" Well:(.367h)		
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity		
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Dedox Potential (Fh)	Redox Potential (Fh)		

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation				
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $			
Number of casing volumes evacuated (if other th	an two)			
If well evacuated to dryness, number of gallons o	evacuated			
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)
VOCs	Ø N	3x40 ml	Y (N)	HCL Ø N
Nutrients	<u>(Y)</u> N	100 ml	Y (N)	H ₂ SO ₄ N
Heavy Metals	<u>Y</u> N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	YN	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Inogranic Chloride	Ø n	Sample volume	Y 🔕	Y If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arri	ved on S	ite 1608	Danie	1 Mover
Comments Arric	ruin present	Weather	15 Show	M-Cold
Windy	This is a	Sampline	event c	only via
use of ba	iler. Sample	s taken	613.	
_		J	bett cito	16.15

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSI	HEET FOR GROUND WATER
Description of Sampling Event: () var tly	Chlorotoim Purge Event
Location (well name) TW4-12	Name and initials I Care / Chare
Date and Time for Purging 2/27/07 an	
Well Purging Equip Used: pump orbailer	Well Pump (if other than Bennet) Crund for
Sampling Event	Prev. Well Sampled in Sampling Event 4-3
	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth
Depth to Water Before Purging 35,38	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg) (.3071)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: <u>0850</u> Gal. Purged <u>12</u>	Time: Gal. Purged
Conductance 702.	Conductance
pH7.18	pH
Temperature 56.5	Temperature
Redox Potential (Eh) 404	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged_	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Paramete	Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = -6.0 / 1.39	Time to evacuate two casing volumes (2V) $T = 2V/Q = 86.35$				
Number of casing volumes evacuated (if other than two)					
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample		Tal	<u>iple</u> ken cle)	Sample Volume (indicate if other than as specified below)		tered cle)	Preservative Added (circle)
VOCs		Ϋ́	N	3x40 ml	Y	N	HCL Y N
Nutrients	,	Y	N	100 ml	Y	N	H ₂ SO ₄ Y N
Heavy Metals	,	Y	N	250 ml	Y	N	HNO ₃ Y N
All Other No. Radiologics	1-	Y	N	250 ml	Y	N	No Preservative Added
Gross Alpha	7	Y	N	1,000 ml	Y	N	H ₂ SO ₄ Y N
Other (specify)	_	Y	N	Sample volume	Y	N	YN
							If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived on site 0843 Daniel Mover	,
Charles Orun present. Weather is Suny-cool breeze-cool This is a pursing event only. Purge began at 08 & Bended	21eurshy
at 0903. Water is Clear to sight - no oder present.	
The second secon	

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DAŢĄ WORKSI	HEET FOR GROUND WATER		
Description of Sampling Event: Chloro	form Quarterly Sampling		
Location (well name) TW4-12	Name and initials Daniel Mover		
Date and Time for Purgingan	d Sampling (if different) 2/28/07		
	Well Pump (if other than Bennet)		
Sampling Event St quarter	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific Conductance uMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity		
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other th	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Ø N	3x40 ml	Y (N)	HCL ON N
Nutrients Heavy Metals	Y N	100 ml 250 ml	Y (N) Y N	H ₂ SO ₄ Ø N HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N
Other (specify) Innganic Chloride	Ø N	Sample volume 250 m	Y 🔕	If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived	on Site 1107	· Daniel Mower
Charles Cruin	present. Weather	
use of bailer	is a sampling	event only via
OSC OT OUTTEL.	, compiles facilities	
		-eft site 1114

Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 11.17.06 Revision: 1

Page 40 of 41

e terratura	TEET FOR GROUND WATER
Description of Sampling Event:	
Location (well name) TV 4-13 Date and Time for Purging 2/21/02/809, an	Name and initials Danie / lower
Date and Time for Purging 2/27/07/809_an	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event	Prev. Well Sampled in Sampling Event 4-12
pH Buffer 7.0 7.0	pH Buffer 4.0 <u>4.0</u>
Specific Conductance 10,900 uMHOS/cm	Well Depth
Depth to Water Before Purging 48.86	Casing Volume (V) 4" Well: 36.98 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	Amb. Temp.(prior to sampling event)
Time: 0820 Gal. Purged 12	Time: Gal. Purged
Conductance 159/	Conductance
рн	pH
Temperature 57.5	Temperature
Redox Potential (Eh) 402	Redox Potential (Eh)
Turbidity 402	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

 ${\bf Mill-Groundwater\ Discharge\ Permit}$

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	ers are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = = /2.32	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{73.57}{2}$
Number of casing volumes evacuated (if other t	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Oth	er Than Energy Labs

Type of Sample	<u>Sample</u> <u>Taken</u> (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)	
VOCs	Y N	3x40 ml	Y N	HCL Y N	
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N	
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N	
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added	
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N	
Other (specify)	Y N	Sample volume	Y N	Y N	
				If a preservative is used, Specify Type and Quantity of Preservative:	

Comments Arrived on Sife 0809 Daniel Mower Charles Orvin present. Weather is Cool-Sunny-Slight	
Charles Orvin present. Weather is Cool-Sunny-Slight This is a pursing event only. Purge began at 08/8 ended	biceze
This is a pursuit event only. Purge began at 0818 ended	_
a+0830. Water is Clear to sight - small amount sediment - No	e dor
Left site at 0838	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	HEET FOR GROUND WATER,
	form Charterly Sampling
Location (well name) TW4-13	Name and initials Daniel Mover Charles Orun
Date and Time for Purgingan	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event St quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Peday Potential (Fh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other th	nan two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Othe	r Than Energy Labs

Type of Sample	<u>Sample</u> <u>Taken</u> (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)		
VOCs	M (T)	3x40 ml	Y (N)	HCL Ø N		
Nutrients	(Y) N	100 ml	Y (N)	H ₂ SO ₄ N		
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N		
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added		
Gross Alpha	Y N	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N		
Other (specify) Thorsanic Chloride	Ø N	Sample volume	Y 🔕	Y S If a preservative is used, Specify Type and Quantity of Preservative:		

Comments Arrived Charles Orvir	on Site	1122	Dani	e) Mou	ver
Charles Orvic	present. V	veather	is Snow	ring - Ve	ner Nerdy
use of baile	hist is a c r. Samples	Samplias	event	orly v	ic'
	is sumples	Techen	16279		
			eft site	e 1130	

Redox Potential (Eh)_____

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

FIELD DA <u>ta</u> worksi	L- Quarterly Chlorotorn Pursing Even
Description of Sampling Event: 1WH-1	1 - Quarterly Chlorotorm Pursus Even
Location (well name) TW4-14	Name and initials Daniel Mower (horse)
Date and Time for Purging 2/27/07 and	d Sampling (if different)
Well Purging Equip Used: 1/pump orbailer	Well Pump (if other than Bennet) Grun fos
Sampling Event	Prev. Well Sampled in Sampling Event TW4-13
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth
Depth to Water Before Purging 90,53	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature

Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	s are Measured
Pumping Rate Calculation	·
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other th	nan two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample Taken (circle)		Sample Volume (indicate if other than as specified below) Filtered (circle)		Preservative Added (circle)
		0.40.1	Y N	HCL Y N
VOCs	Y N	3x40 ml		1100
Nutrients	Y N	100 ml	Y N	112504
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	YN	Y N
				If a preservative is used, Specify Type and Quantity of Preservative:

Comments A Charles After	rrived	οΛ	Site	075	58_	Danie	el Mo	wer
Charles	Orvin	Pre	sent. h	Jeathe	er is	<u> </u>	SUN IS	out
After	taking	Well	depth		even	SN 10	poise.	
						· ·		

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	LEET FOR GROUND WATER,
Description of Sampling Event:	Sampler Day Sampling
Location (well name) TWU-14	Name and initials Lanel Mover
Date and Time for Purgingan	d Sampling (if different) 2/28/07
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event St quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	ters are Measured
Pumping Rate Calculation	,,
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other	than two)
If well evacuated to dryness, number of gallon	s evacuated
Name of Certified Analytical Laboratory if Ot	her Than Energy Labs

Type of Sample Taken (circle)		Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)		
VOCs	Ø N	3x40 ml 100 ml	Y (N)	HCL Ø N H ₂ SO ₄ Ø N		
Nutrients Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N		
All Other Non- Radiologics	Ϋ́N	250 ml	Y N	No Preservative Added		
Gross Alpha	Y N	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N		
Other (specify) Inorganic Chloride	Ø N	Sample volume	Y 🔞	Y S If a preservative is used, Specify Type and Quantity of Preservative:		

Comments Arrived	on Site 1133 present. Weather	Daniel Mower is partly cloudy-cool-breezy
Charles Orving.	present. Weather	is paitly cloudy-cool- breezy
stormy, This use of bailer.	Samples taken	1137.
		eft 5.40 1146

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	HEET FOR GROUND WATER PUSSING EVEN
Description of Sampling Event: (XOG-7-1	Sampler Ol 1
Location (well name) TW4-15	Name and initials Charles Onin
	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance 10,700 uMHOS/cm	Well Depth 128.5'
Depth to Water Before Purging 83.01	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	Amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time:Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Dedex Detected (Ph)	Padov Potential (Fh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = ==	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other t	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Oth	er Than Energy Labs

Type of Sample	Vipe of Sample Sample Taken (circle)		Sample Volume (indicate if other than as specified below)		ered cle)	Preservative Added (circle)
VOCs	Y	N	3x40 ml	Y	N	HCL Y N
Nutrients	Y	N	100 ml	Ÿ	N	H ₂ SO ₄ Y N
Heavy Metals	Y	N	250 ml	Y	N	HNO ₃ Y N
All Other Non- Radiologics	Y	N	250 ml	Y	N	No Preservative Added
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄ Y N
Other (specify)	Y	N	Sample volume	Y	N	YN
						If a preservative is used, Specify Type and Quantity of Preservative:

Comments C	ontinuos	Pumpins	well	-C)	wrl	es Oruch
present.	ontinuos Wenther Well dept	is cool-	breezy -	some 303.	clou	ids-cool
	0001080					move.

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSE	EET FOR GROUND WATER
Description of Sampling Event:	Sampler Sampling
Location (well name) TW4-15	Name and initials Daniel Mover Charles Orum
Date and Time for Purging and	1 Sampling (if different) 2/28/07
i.	Well Pump (if other than Bennet)
Sampling Event 5+ qualter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0 122.5'
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging 83.01	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	rs are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other t	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample	٠ - المستقد ا		Filtered (circle)	Preservative Added (circle)			
VOCs	(Y) N	3x40 ml	Y (Ñ)	HCL Ø N			
Nutrients	(Y) N	100 ml	Y (N)	H₂SO ₄ Ø N			
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N			
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added			
Gross Alpha	YN	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N			
Other (specify) Inosganic Chloride	Ø n	Sample volume	Y	If a preservative is used, Specify Type and Quantity of Preservative:			

Comment	s A	rrived	On		e 141	8	. Dai	rie)	Mo	<u>we</u> r
Char	les	Orvin	Drese	ent.	Weat		is Co	19 -	Clo	nda
Very	· W	endy. Th	is' is	a_	Samp	ling	<u>enev+</u>	NO .	X	vid
use '	of	bailer	<u>, San</u>	<u>nples</u>	take	n/1	421°			
				<u> </u>			<u></u>			
						<u></u>	<u>eft S</u>	46 1.	72/	

Date: 11.17.06 Revision: 1

Groundwater Monitoring Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA-WORKSH	EET FOR GROUND WATER
Description of Sampling Event: War ter	Sampler D. Marge
Location (well name) TW4-16	Name and initials Danie Mower Charles Orvin
Date and Time for Purging 2/27/07 and	1 Sampling (if different)
Well Purging Equip Used: pump or _bailer	Well Pump (if other than Bennet) Grand-to
Sampling Event	Prev. Well Sampled in Sampling Event 4-18
	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 142'
Depth to Water Before Purging 66.68	Casing Volume (V) 4" Well: 47.18 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1212 Gal. Purged 12	Time: Gal. Purged
Conductance 3985	Conductance
_{pH} 6.78	pH
Temperature 56.6	Temperature
Redox Potential (Eh) 362	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged_	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation				
Flow Rate (Q), in gpm. $S/60 = -\frac{16.39}{16.39}$	Time to evacuate two casing volumes (2V) $T = 2V/Q = 96.36$			
Number of casing volumes evacuated (if other the	han two)			
If well evacuated to dryness, number of gallons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	YN	HCL Y N
Nutrients	Y N	100 ml	Y N	H_2SO_4 Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived on site 1205 Daniel Mower	ì
Charles () run present. Weather is Very Windy - Codi- Cloud	91
This is a purcial event only. Turge becan attain ended	•
at 1226. Water is Clear to sight- no oder present.	
Left site at 1255	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

Description of Sampling Event:	orn Charterly Sampling
	Complex
Location (well name) TW4-16	Name and initials Daniel Mover Charles Orun
Date and Time for Purgingand	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event S+ qualter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time:Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
рН	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity		Turbidity_		
Volume of Water Purge	d When Field Pa	arameters are Measu	red	
Pumping Rate Calculation	<u>on</u>			,,
Flow Rate (Q); in gpm. S/60 = =				ng volumes (2V)
Number of casing volum	ies evacuated (if	f other than two)		
If well evacuated to dryr	iess, number of	gallons evacuated		
Name of Certified Analy	tical Laboratory	y if Other Than Ener	gy Labs	
Type of Sample	Sample Taken	Sample Volume (indicate if other	Filtered (circle)	Preservative Added (circle)

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	(Y) N	3x40 ml	Y (N)	HCL Ø N
Nutrients	Y) N	100 ml	Y (N)	H₂SO ₄ Ø N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N
Other (specify) Tronganic Chloride	Ø n	Sample volume 250 m l	Y 🐧	Y If a preservative is used, Specify Type and Quantity of Preservative:

Comments	Trrived	on Sit	e1242 Weather	Dan		Mover
Charles	Orvin	present.	Weather	is Sno	wind Mind	- Wendy
use of	bailer.	Samples	taken	1246.	OIC17	
				eft sit	re 12	5

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSI	HEET FOR GROUND WATER D
Description of Sampling Event:	Sampler Charotorn Page Event
Location (well name) TW4-17	Name and initials Danie Mower Charles Orvin
Date and Time for Purgingan	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Crund (if
Sampling Event	Prev. Well Sampled in Sampling Event 4-14
	pH Buffer 4.0 40
Specific Conductance 10,900 uMHOS/cm	Well Depth 130
Depth to Water Before Purging 78.43	Casing Volume (V) 4" Well: <u>\$3.67</u> (.653h) 3" Well:(.367h)
Conductance (avg)	
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)
Time: <u>0954</u> Gal. Purged 12	Time: Gal. Purged
Conductance 3979	Conductance
pH 6.54	pH
Temperature 56.7	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Fh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation	,			
Flow Rate (Q), in gpm. $S/60 = \frac{60}{11}$	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{623}{2}$			
Number of casing volumes evacuated (if other th	nan two)			
If well evacuated to dryness, number of gallons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	YN	100 ml	YN	H ₂ SO ₄ Y N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

	on site 097	8 Daniel	Mower
Charles Orvin	present. Wea		dy-cool-sny
at 1003. Water	is Cloudy-	. Purge began	at 0952 ended
at 1005. Water	15 Glocoy- Left 3	ite at 1006	resent - 10 dags.

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	LEET FOR GROUND WATER
Description of Sampling Event: (h loro-	form Charterly Sampling
Location (well name) TW4-17	Name and initials Daniel Mover Charles Orvin
Date and Time for Purgingan	d Sampling (if different) 2/28/07
•	Well Pump (if other than Bennet)
Sampling Event St quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth_
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged_	Time: Gal. Purged
Conductance	Conductance
pH to the top of the t	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	rs are Measured
Pumping Rate Calculation	·
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other th	nan two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	ar Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs Nutrients	(Y) N	3x40 ml 100 ml	Y (N) Y (N)	HCL N H ₂ SO ₄ N
Heavy Metals All Other Non-Radiologics	Y N Y N	250 ml 250 ml	Y N Y N	HNO ₃ Y N No Preservative Added
Gross Alpha Other (specify) Inoscanic Chloride	(A) N	1,000 ml Sample volume 250 m	Y N Y Ø	H ₂ SO ₄ Y N Y If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived Charles Orun	on Site	1150	Danie	1) Mower
Charles Orvin	present.	Weather	is Wind	y - cold
Showing. Thi	s' is a	Sampling.	event o	only via
use of bailer.	Samples	taken /	153.	
		<u>_</u>	<u>eft Site</u>	1202
			eft site	1202

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSE	EET FOR GROUND WATER
Description of Sampling Event: Warte	Sampler O IM
Location (well name) TW 4-18 Date and Time for Purging 2/27/07 Hoco and	Name and initials Danie Mower
Date and Time for Purging 2/27/07 Ho and	I Sampling (if different)
Well Purging Equip Used: pump or _bailer	Well Pump (if other than Bennet) Cryol 62
Sampling Event	Prev. Well Sampled in Sampling Event 4-8
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 137.5
Depth to Water Before Purging 55, 45	Casing Volume (V) 4" Well: 53.58 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 110 Gal. Purged 12	Time: Gal. Purged
Conductance 1524	Conductance
рн	pH
Temperature 56.8	Temperature
Redox Potential (Eh) 144	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Par	rameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = = 17 - 85	Time to evacuate two casing volumes (2V) $T = 2V/Q = 107.15$
Number of casing volumes evacuated (if	other than two)
If well evacuated to dryness, number of g	allons evacuated
Name of Certified Analytical Laboratory	if Other Than Energy Labs

Type of Sample			Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	YN	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	YN	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments ATT	red on site	1105	Daniel 1	lower.	•
Charles Or	vin present.	Weather	is Very W	lendy-Cloudy-coo	ય
This is a	Durging event	only. Pura	e began a	+ 1108 endéd 15 very present	
a+ 1126. W	afer is Very	cloudy	Sedimen+	is very present	nooder
		+ site o	+ 1138		

Mill – Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKS	EET FOR CROUND WATER
Description of Sampling Event: Chloro	orm Quarterly Sampling
Location (well name) TW4-18	Name and initials Daniel Mover Charles Orvin
Date and Time for Purgingand	Sampling (if different) 2/28/07
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event 5+ quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Time:Gai. Furged	Time. Gai. I taged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal, Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Fie	ld Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuate	ed (if other than two)
If well evacuated to dryness, numbe	r of gallons evacuated
Name of Certified Analytical Labor	atory if Other Than Energy Labs

Type of Sample	Sample Sample Volume (indicate if other than as specified below)		Filtered (circle)		Preservati (circle)	Preservative Added (circle)	
VOCs		N	3x40 ml	Y	(N)	HCL	Ø N
Nutrients		N	100 ml	Y	<u> </u>	H ₂ SO ₄	V N
Heavy Metals		N	250 ml	Y	N	HNO ₃	<u> </u>
All Other Non- Radiologics	Y	N	250 ml	Y	N		ative Added
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄	Y N
Other (specify) Inorganic Chloride		N	Sample volume	Y	®	Specify Ty	rative is used, pe and f Preservative

Comments Ar	rived	on Sit	e 1228	Danie	1) Mower
Comments Ar	Orvin	present.	Weather	is ('ald	- Windy
Showing	. This	is a	Sampling	evert (only via
use of	bailer.	Samples	taken /	1234	
					: A O C :
				<u>-e+1 Site</u>	1238

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

Description of Sampling Event:	Ty Chlorotorm Purging Even-
	Sampler Name and initials Daniel Mower Charles Ofvin
Date and Time for Purging 2/27/07 and	I Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance 10,900 uMHOS/cm	pH Buffer 4.0
Depth to Water Before Purging 87.80	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Tunkidity	Turbidity
Turbidity	
Volume of Water Purged When Field Parameter	rs are Measured
Pumping Rate Calculation	,,
Flow Rate (Q), in gpm.	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
S/60 = =	
Number of casing volumes evacuated (if other the	
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	YN	HCL Y N
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Ϋ́N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Ϋ́N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments_	Contin	wous pumping Weather is left site of	ic we	il - Chai	les
Urvin	Dresent.	Weather is	cool-	- some clouds	5 -
Took 1	sell death -	left site of	103.		
					·-
Meter	0112600	Flow	Rate	6 gpm	
				~ ~ ~	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSE	orn Quarterly Sampling
Location (well name) TWH-19	Name and initials <u>Variet</u> Mover Charles Orvin
Date and Time for Purgingand	1 Sampling (if different) 2/28/07
4	Well Pump (if other than Bennet)
Sampling Event St qualter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	
	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal, Purged_
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Ph)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Fig	eld Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuat	ed (if other than two)
If well evacuated to dryness, number	er of gallons evacuated
Name of Certified Analytical Labor	ratory if Other Than Energy Labs

Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
Ø N	3x40 ml	Y (N)	HCL (V) N H ₂ SO ₄ (V) N
		Y N	HNO ₃ Y N
YN	250 ml	Y N	No Preservative Added
Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Ø N	Sample volume	Y 🔕	Y If a preservative is used, Specify Type and Quantity of Preservative:
	Taken (circle) N Y N Y N Y N Y N Y N Y N Y N N Y N	Taken (indicate if other than as specified below)	Taken (circle) (indicate if other than as specified below) (circle) Y N 3x40 ml Y N Y N 100 ml Y N Y N 250 ml Y N Y N 250 ml Y N Y N 1,000 ml Y N Y N Sample volume Y N

Comments Arrived	on Site	e 1630	Danie	Mower
Comments Arrived Charles Orvin	Dresent	MECTIVEL	is Wend	y-Cold
Cloudy. This	s' is a	Sampling	event o	nly via
use of bailer.	Samples	taken	6 <i>3</i> 5	
			· · · · · · · · · · · · · · · · · · ·	17 (117)
			<u>ett Site</u>	1675

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKSI	HEET FOR GROUND WATER PURSING EVE
	Sampler
Location (well name) 1 W 4-20	Name and initials Onie Mower Charles Or
Date and Time for Purging 2/27/06 an	nd Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth
Depth to Water Before Purging 80.28	Casing Volume (V) 4" Well: (.653h)
Conductance (avg)	3" Well:(.367h) pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	Amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Raday Potential (Ch)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	s are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other th	nan two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments	Continuo	ous Dum	DIAG WE	ell-Charle	es Orun
present. I	Weather eze. Took	well de	0+1 - 16 5 00gh-0	ell-Charle fold actually ft site at	<u>671</u> 3
Meter O.				6.3 gpm	

Date: 11.17.06 Revision: 1

Groundwater Monitoring Quality Assurance Plan (QAP)

Page 40 of 41

FIELD DATA WORKS	form Clasterly Sampling
	Complex
Location (well name) TW4-20	Name and initials Lanel Mover Charles Orus
Date and Time for Purgingand	d Sampling (if different) 2/28/07
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event 5+ quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Fig	old Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuate	ed (if other than two)
If well evacuated to dryness, number	er of gallons evacuated
Name of Certified Analytical Labor	atory if Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y) N	3x40 ml	Y (N)	HCL Ø N
Nutrients	Y) N	100 ml	Y 🔊	H ₂ SO ₄ Ø N
Heavy Metals	Y N	250 ml	YN	111103 1 11
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Inorganic Chloride	Ø n	Sample volume	Y 🚯	Y S If a preservative is used, Specify Type and Quantity of Preservative:

Commen	ts Ar	rived Drvin	on	Site	1619	8	.0	injel	Mower
Char	les (Druin	Drese	nt.	Weat	<u>her</u>	is C	0/9-	Wendy
Cle	on gh	g This	215	4	Samp	1115	even	+ on	A NIC
use	O.A.	barler.	Sam	ples	+مرازو	<u>'N</u>	623.		
						L	ef+	Site 1	627

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

Description of Sampling Event: Quarter 1	~ Chloroform Pusin Event
Location (well name) TV4-21	Sampler Name and initials Danie Mower
Date and Time for Purging 2/27/67 and	(hailes ('J) v' c
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Grund for
Sampling Event	Prev. Well Sampled in Sampling Event 4-5
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth
Depth to Water Before Purging 59.82	
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1324 Gal. Purged 12	Time: Gal. Purged
Conductance 3374	Conductance
pH	pH
Temperature 58./	Temperature
Redox Potential (Eh) 399	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

T. L. He.	Truckidien
Turbidity	Turbidity
Volume of Water Purged When Field I	Parameters are Measured
Pumping Rate Calculation	"
Flow Rate (Q), in gpm. S/60 = = 14.18	Time to evacuate two casing volumes (2V) $T = 2V/Q = 85.12$
Number of casing volumes evacuated (i	if other than two)
If well evacuated to dryness, number of	gallons evacuated
Name of Certified Analytical Laborator	ry if Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	Y N	HCL Y N
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived on 5, te 1319 Daniel Mower Charles Orvin present Weather is Very Windy Ver-Cloudy Cold
This is a pursiff event only. Purge began at 1322 ended
at 1336. Water is Clear to sight, no odor, very very little sediment
Left site at 1340

Date: 11.17.06 Revision: 1

Page 40 of 41

FIELD DATA WORKS	TEET FOR GROUND WATER,
	Compler
Location (well name) TW4-21	Name and initials Lanel Mover
Date and Time for Purgingand	d Sampling (if different) 2/28/07
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event S+ quarter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
C.I. D	Time: Gal. Purged
Time: Gal. Purged	Time. Gal. 1 tagett
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Fiel	d Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuate	d (if other than two)
If well evacuated to dryness, number	r of gallons evacuated
Name of Certified Analytical Labora	atory if Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	(Y) N	3x40 ml	Y (N)	HCL Ø N
Nutrients	(Y) N	100 mi	Y (N)	H ₂ SO ₄ Ø N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Ϋ́N	H ₂ SO ₄ Y N
Other (specify) Thousanic Chloride	Ø n	Sample volume	Y	Y If a preservative is used, Specify Type and Quantity of Preservative:

Comments	Arrived	on Si	te 1406	. Dani	e Mower
Charles	Orvin	present.	Weather	is We	ndy - Cold
Cloudy	ナん	s' is a	Sampling	event	only via
use b	f bailer.	Samples	taken /	4100	
				7	T d t a f
			<u>_</u>	left Sit	<u>e /7/5</u>

Date: 11.17.06 Revision: 1

Page 40 of 41

ATTACHMENT 1
WHITE MESA URANIUM MILL

FIELD DATA WORKS	HEET FOR GROUND WATER
Location (well name) TU4-22	Sampler Name and initials Daniel Mower Charles Osvin
Date and Time for Purging $\frac{2/27/07}{}$ and	d Sampling (if different)
Well Purging Equip Used: ∠pump or _bailer	Well Pump (if other than Bennet) Grund Co
Sampling Event	Prev. Well Sampled in Sampling Event 4-21
pH Buffer 7.0	pH Buffer 4.0 4.0
Specific Conductance 10,900 uMHOS/cm	Well Depth 115
Depth to Water Before Purging 57.76	Casing Volume (V) 4" Well: 37.37 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: 1349 Gal. Purged 12	Time: Gal. Purged
Conductance 4653	Conductance
pH	pH
Temperature 57.7	Temperature
Redox Potential (Eh) 413	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Rh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Parameters are Measured					
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = = 6.0 12.45	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{74.75}{}$				
Number of casing volumes evacuated (if other than two)					
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	Y N	3x40 ml	YN	HCL Y N
Nutrients	YN	100 ml	YN	H ₂ SO ₄ Y N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N
				If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived on 5, to 1343. Daniel Mower Charles Orvin present. Weather is Very Windy-Very Cloud This is a pursing event only. Purge began at 1347 ended	1 / 1
Charles Orvin present. Weather is Very Windy-Very Clou This is a pursing event only. Purge becan at 1947 ended	طهرصا(
at 1400. Water is Clear to sight - very little sediment	

Mill – Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKS	TOIM Charterly Sampling
	Name and initials Lanel Mover
Date and Time for Purgingan	d Sampling (if different) 2/28/07
	Well Pump (if other than Bennet)
Sampling Event 5+ qualter	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	Amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH	pH
Temperature	Temperature
Pader Petential (Fh)	Redox Potential (Eh)

Mill – Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Parameter	rs are Measured			
Pumping Rate Calculation				
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $			
Number of casing volumes evacuated (if other than two)				
If well evacuated to dryness, number of gallons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs Nutrients	Y N	3x40 ml 100 ml	Y (N)	HCL N H ₂ SO ₄ N
Heavy Metals	Y N	250 ml	YN	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Ϋ́N	H₂SO ₄ Y N
Other (specify) Inorganic Chloride	Ø N	Sample volume	Υ 🐧	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrived	on Site 1430 present. Weather	Daniel Mower is Very Wendy-Cold
harles Orvin	present. Weather	is Very Wendy-Cold
ourtly cloudy. The	s' is a sampling	event only via
use of bailer.	S is a sampling Samples taken	14.34.
		of 2 C to 1438

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

FIELD DATA WORKS	HEET FOR GROUND WATER Sim Charterly Sampling
Location (well name) MW-60	Sampler Name and initials Charles Orvin
Date and Time for Purgingand	
Well Purging Equip Used:pump orbailer	
Sampling Event Quartly Chloroform	Prev. Well Sampled in Sampling Event MA
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill – Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Quality Assurance Plan (Q.	AP)					Page 41 o	of 41
TurbidityTurbidity							
Volume of Water Purgeo	l When l	Field P	arameters are Measu	red_		·	
Pumping Rate Calculation	<u>m</u>					,,	
Flow Rate (Q), in gpm. S/60 = =						g volumes (2V)	
Number of casing volum	es evacu	ıated (i	f other than two)				
If well evacuated to dryn	ess, nun	nber of	gallons evacuated				
Name of Certified Analy	tical Lal	borator	y if Other Than Ener	gy La	lbs		
Type of Sample	Sam Tak (cire	<u>cen</u>	Sample Volume (indicate if other than as specified below)		ered cle)	Preservativ (circle)	ve Added
						YYGY	77 NT
VOCs	Y	N	3x40 ml	Y	N	HCL	Y N
Nutrients	Y	N	100 ml	Y	N	H ₂ SO ₄ HNO ₃	Y N Y N
Heavy Metals All Other Non-Radiologics	Y	N N	250 ml 250 ml	Y	N N	The second secon	ative Added
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄	Y N
Other (specify)	Y	N	Sample volume	Y	N	Y N	
	If a preservative is used Specify Type and Quantity of Preservative				e and		
							·
Comments		<u>a_</u>	I Blank				

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event:	otorn Quarterly Sampling
Location (well name) MW-63	Sampler Name and initials David Tulk - Davie 1 Mowers Charles, Ofun
Date and Time for Purgingar	nd Sampling (if different)
	Well Pump (if other than Bennet)
Sampling Event Questerly Chlorate	MPrev. Well Sampled in Sampling Event 1
•	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	Amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Parameters are Measured				
Pumping Rate Calculation				
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $			
Number of casing volumes evacuated (if other than two)				
If well evacuated to dryness, number of gallons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)
VOCs	Ø N	3x40 ml	Y Ø	HCL Y N
Nutrients	∅ N	100 ml	Y (S) Y N	H ₂ SO ₄ Y N HNO ₃ Y N
Heavy Metals All Other Non-Radiologics	Y N Y N	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Inorganic Chloride	Ø N	Sample volume 250 m	Y (S)	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments This is a rinsate sample of the Grund pump. 40 gallons of Nitric Acid followed by 40 ga of liqui Nox followed by 50 gallons OI water or k	Ilons
"ME Than MAI Latinged his Alloc link III \worder of i	17 11 N
DI TIGOT FOX FORDUCE OF SO SECTIONS OF	H-Hau.

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

FIELD DATA WORKS	IEEI FOR GROUND WATER
Description of Sampling Event: (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	orm Charterly Sampling
Location (well name) TW4-65	Name and initials Danie Mower Charles Orus
Date and Time for Purgingan	d Sampling (if different) 8/23/07
Well Purging Equip Used:pump orbailer	
Sampling Event Quasterly Chlorofor	APrev. Well Sampled in Sampling Event N/A
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Ouality Assurance Plan (OAP)

Quanty Assurance Fian (QAF)	Tugo 17 of 12
Turbidity	Turbidity
Volume of Water Purged When Field	d Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. : S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated	d (if other than two)
If well evacuated to dryness, number	of gallons evacuated
Name of Certified Analytical Labora	tory if Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs Nutrients	Ø N Ø N	3x40 ml 100 ml	Y (N) Y (N)	HCL (Ý) N H ₂ SO ₄ (Ý) N
Heavy Metals All Other Non- Radiologics	Y N Y N	250 ml 250 ml	Y N Y N	HNO ₃ Y N No Preservative Added
Gross Alpha Other (specify) Inorgonic Chloride	Y N	1,000 ml Sample volume	Y N Y N	H ₂ SO ₄ Y N Y If a preservative is used, Specify Type and Quantity of Preservative:

Comments		
	Ouplicate	TI.14-20
	- Copic six	

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUND WATER

Description of Sampling Event: Choro to	um Quarterly Sampling
	Name and initials Daniel Mower Charles Oiv
Date and Time for Purgingan	d Sampling (if different) 3/28/0/
Well Purging Equip Used:pump orbailer	.
Sampling Event 15+ quarter Chloroform	Prev. Well Sampled in Sampling Event 1
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event)
Time:Gal. Purged	Time:Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Duplicate TW4-5

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Ouglity Assurance Plan (OAP)

Quality Assurance Plan (Q	(AF)						7.41		
Turbidity			Turbidity_	······································	en e				
Volume of Water Purge	d When	Field I	Parameters are Measu	red	<u> </u>				
Pumping Rate Calculation	<u>on</u>					4.			
Flow Rate (Q), in gpm. S/60 = =	·					g volumes (2V)			
Number of casing volum	ies evaci	uated (if other than two)						
If well evacuated to dry	iess, nun	aber of	f gallons evacuated			<u>. </u>			
Name of Certified Analy	tical La	borato	ry if Other Than Ener	gy La	lbs		·		
Type of Sample	Tal	Sample Sample Volum Taken (indicate if oth circle) than as specifi below)			ered cle)	Preservati (circle)	Preservative Added (circle)		
	45 8			7,	6 3	IICI	Ø N		
VOCs	(N	3x40 ml	Y	<u>Ø</u>	HCL			
Nutrients	Ø	N	100 ml	Y	<u>Ø</u>	H ₂ SO ₄			
Heavy Metals	Y	N	250 ml	Y	N	HNO ₃	Y N		
All Other Non- Radiologics	Y	N	250 ml	Y	N		ative Added		
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄	Y N		
Other (specify)	7°	N	Sample volume 250 m	Y	Ø	Y 🐧			
InorganicChlori						Specify Ty			
						Quantity	Preservativ		

Comments	Duplica te	of_	TW4-5	

Oata	Capth to Water									
/4to	Tima	Well	Depth		Flow		Time			
2/02					1000		111119			
	1348	MW-4	76.28			-				
		·			1	meter	081 <u>705</u>			
						Flow				
		·								
	1353	TW4-15	75.18			Meter	0.7.0.7.0			
				·		Flow	002222			
						11.101				
	1403	TW4-19	91.18			Meter	234273			
14:		: .				Flow	5.8gpm			
							3/2/1			
	358	T // 00	De -							
•	226	TW4-20	77.30				016408			
						Flow				
							!			
							i			
		-								

821.43 mm Hg

Oata		· · · · · · · · · · · · · · · · · · ·		Oapt	h to Wate)r	No. 40, a setteration to serve, w	
11	Tlmə	Well	Dept		Flow		Time	
- CE 199	0838	MW-4	7.5.38	3				
1/8/07	0840	MW4a	74.78	,				
	0844_	TW4-1	64.78					-
	0858	TW4-3	72.88				-	1.
	0925	TV4-3	48.89					1
	0902	TW4-4	67.08			 		
	0930	TW4-5	55.88					
	0908	TW4-6	74.83				, .	
	0842	TW4-7	71.97				-	
	0847	TW4-8	71,22					
f	-	TW4-9	53.06					
1	0937	TW4-10	55.54					
	0942	TW4-11	65.93					
i i			35.14					
		TW4-13						
- 1		TW4-14						
		TW4-15			-			
		TW4-16						
		W4-17 "		· • • • • • • • • • • • • • • • • • • •				
		W4-18 !		······································				
į.		W4-19 C						
į		W4-20 7						
- 1	4000	W4-21 6		3/4			i	
100	(2)	W4-22 5	4.59 3	*				7
Cartes Company Lands Company								

* Possible instrument Error

The Accordance of the Accordance and the Accordance

Oata			,838.4 <u>.</u>	Dapil	to Wat	9 <i>r</i>	S. The Americans of the German Art.	· · · · · · · · · · · · · · · · · · ·
Vala	Tima	Well	Depth				The	7
18/07					Flow		Time	<u> -</u>
			<u> </u>	 				
	0903	MW-4	78.80		M	- Do-		
		1	70.00		Meter	08229	왹	:
					Flow	5.7gpm		
				 				
	0908	7						
	0108	11W4-15	91,13		Meter	002222	Changed 1	1-9-07
			ļ	<u> </u>	Flow			
				ļ				
	10.67							
	1053	TW4-19	91.38		Meder	239105		
					Flow			
	2918	Ti dina	72.0 ()					
	2118	TW420	79.60		Meter	016933		
					Flow			
							j	
	1	İ	T					

834,88 mm Hg Depth to Water Oata Tlma Depth Well Time Flow 1/15/07 79.48 1020 MW4 Meter 0830180 Flow 1025 TW4-15 73.58 Meter 0000000 Flow 1358 758 TWY-19 88.65 Meter 2449460 Flow 1033 TW420 88.33 Meter 0175660 Flow

NV XXXXFORM NO HIZER IN PORTOR

503341

831.85 mnHa

Došo				Depth	to Wate	r		1	
Date	Time		Time		Time		Time		
122/06							, tille		-0
							-		-
	6912	MW4	71.86			FI.		<u> </u>	
***.			1 11.00			Flow	i		-
						Meter	11836120		-
722					1				-
	0918	TW4-15	90.32			Flow	10 15	Changed hater me	cui
						Meter	69.15	1/24/06	er
						1 (CTC)	10052210	1184/06	10
									1
	1038	TW4-19	84.89			Flow			1
					·	Meter	2418290	-CO	1
							·		
		gen							
	0925	TW4-20	83.28			Flow	83.63		
			•			Meter	0181900		
								e er er e	
								•	
	·· *\$ \$\$\$	· ·							
								1	,

508792

831-85 mmHs

Date		Depth to Water									
Date	Time		Time		Time		Time				
1/29/07											
•											
	9:30	#W-4	67.41				p-1	1			
		The state of the s					Flow	0836120			
							Meter				
			/								
	9:36	1174-15	68,28				<i>y-i</i>				
	,	1817 (2	0000				Flow	over->			
							Meter				
	10:23	TW-4-19	9112								
			11.10	 			Flow	7562200			
					· · · · · · · · · · · · · · · · · · ·		1/16461				
	9:41	Mw4-20	87,35			San and San	Flow				
							Meter	0187600			
							1116461				
			,					;			
	·										
		ť									
	o salphipe.										

837.94

Date	Depth to Water									
54.0	Time		Time		Time		Time			
2/5/07										
	1105	MW-4	72.78				Fla			
							Flow	- 00. 0		
							116464	0842260		
							+			
	1109	TW4-15	70.58				Flow	out of		
							Meter	service		
	1202	TW4-19	90.38				Flow			
							Meter	2616250		
	11111	TI 41 70	A				,			
	1114	TW4-20	81.48	:			Flow			
							Meter	0194000		
	Change	d met	9(W4-19		0 15 1				
	1	T I	ł		on	2-16-15	2	e ee		
	Turned	TW4-15	for all	00	2-13-0	20				
			yacı	Ort	0-150	/				
		·								
	·Mar									

618.74

Date			010		to Wate	r		•
Date	Time		Time		Time		Time	T
2/12/07	1242	MW-4	74.88	3			Flow.	
							3	0848560
. 44								
	1248	TW4-15	72.13				Flow	
				 			Meter	Out of Service
·								
	1415	TW4-19	92 19				-1	
	7772	1007-11	00.17	 			Flow	2/12/24
		·					Meter	2613430
Military and Australia								·
	1348	TW4-20	81.83				Flow	
								0200700
		ç						
ſ					P			
		4-15	turned	ha k	T 1	ון מו		
			TOP	DUC (On	Tuesday	13th -		
	· victoria	,						
	or (Specific							

619.93

Date				Depth	to Wat	er		
	Time		Time		Time		Time	
2/19/07	0953	MW-4	75.10					1055590
							Meter	0855590
. 44,								
	1000	TW4-15	83.78				Flow	0000080 E
<u> </u>							Flow Meter	Ł
	1145	77 11 10	8218					
	11.13	TW4-19	8218				Flow	
							Meter	<u> (2033470</u>
	jā.							
	1120	TW4-19	80.43				Flor	4.
		e e see le		j v			1 6 2 1 2 1	220500
		o						0 60
								
		l l				·		
	CARAGO.							

539823

Depth to Water

Time Time Time

MW-4 74.58

Flow

Meter

TW4-15 73.59

Flow

Meter

·					Meter	0862)3
2/21/02	10.11	TW4-15	77'50			
	1040	1 64-15	13.7		Flow Meter	Or Door
2/24/07	iOner	TW4-19	86.28		Flow	
					Meter	009380
1/24/07	1047	TV420	81.03		Flow	
		0			Meter	0216070
	- Mary	t				
	·					

Date

Time

1039

mmhs 616.39

Date		Depth to Water									
Date	Time	Time	Time		Time	·					
2/27/21	1	Mell	Dep+h_								
	0725	MW-4	76,43	1							
	0703	TW4-A	77.01	Tied	With MU	-4					
. wd,	1448	TW4-1	64,23			-					
	1524	TW4-2	01.83								
	0921	TW4-3	48.88								
	1506	TW4-4	66.81								
	1252	TW4-5	54,89								
	1238	TW4-6	74.69			·····					
	1429	TW4-7	70.63			M1					
	1038	TW4-8	70.29								
	1033	TW4-9	52.92								
	1806	TW4-10	55.81								
	1546	TW4-11	65.70								
	0843	6 TW4-12	35.38								
i i	0809	TW4-13	48.86								
, - (0758	TW4-14	90.53								
	0803	TW4-15	83.01								
	1205	TW4-16	66.68								
(0948	TW4-17	78.43								
	1105	TW4-18	55,45								
	2703	TW4-19	87.80								
	2713	TW4-20	80.28								
	319	TW421	59.82								
	343	TW4-22	3739 00	,							

57.76

627.88 mmhs

Date				Depth	to Wate	r		
Date	Time		Time		Time		Time	
3-5-07	1053	MW-4	7516				Flow	
·							Mater	0870910
			,				1 10 101	0870110
	1057	TW4-15"	72.72				Flow	
<u></u>							Meter	Meter Stopped
	·							1,7
**************************************	1.50							
	1538	TW4-19	88.82				Flow	
	,				-		Meter	0161300
2500 to	1104	TW4-20	85.91					:
		10700	82,11				Flow	
						· .	Meter	0223136
		Mete	r cha	nsed	oct or	3-6	-07	
		ı						er er
			,			·		
· · · · · · · · · · · · · · · · · · ·								
Ì	A MARINA							

625.602 mmhg.

Date	Depth to Water								
	Time		Time	-	Time		Time	T	
3/12/07		MW-4	75.15	BEARA.				087/870	
							Hotor	0876870 Not Rue	
							- HUCIER	Wof Jews	
									
		Tw4-15	74.88				Houl	20021	
							Holor	0903150 Not Rua	
							11111	No Peux	
		TW4-19	89.56				Flow	Barrana	
							Meter	5212080	
							ricter	J. Bg/m	
		-							
		TW4-20	81.37				Flow	230020	
							Meter	Not Run	
		о						700 1000	
								A SHEET	
	· Militario	,							

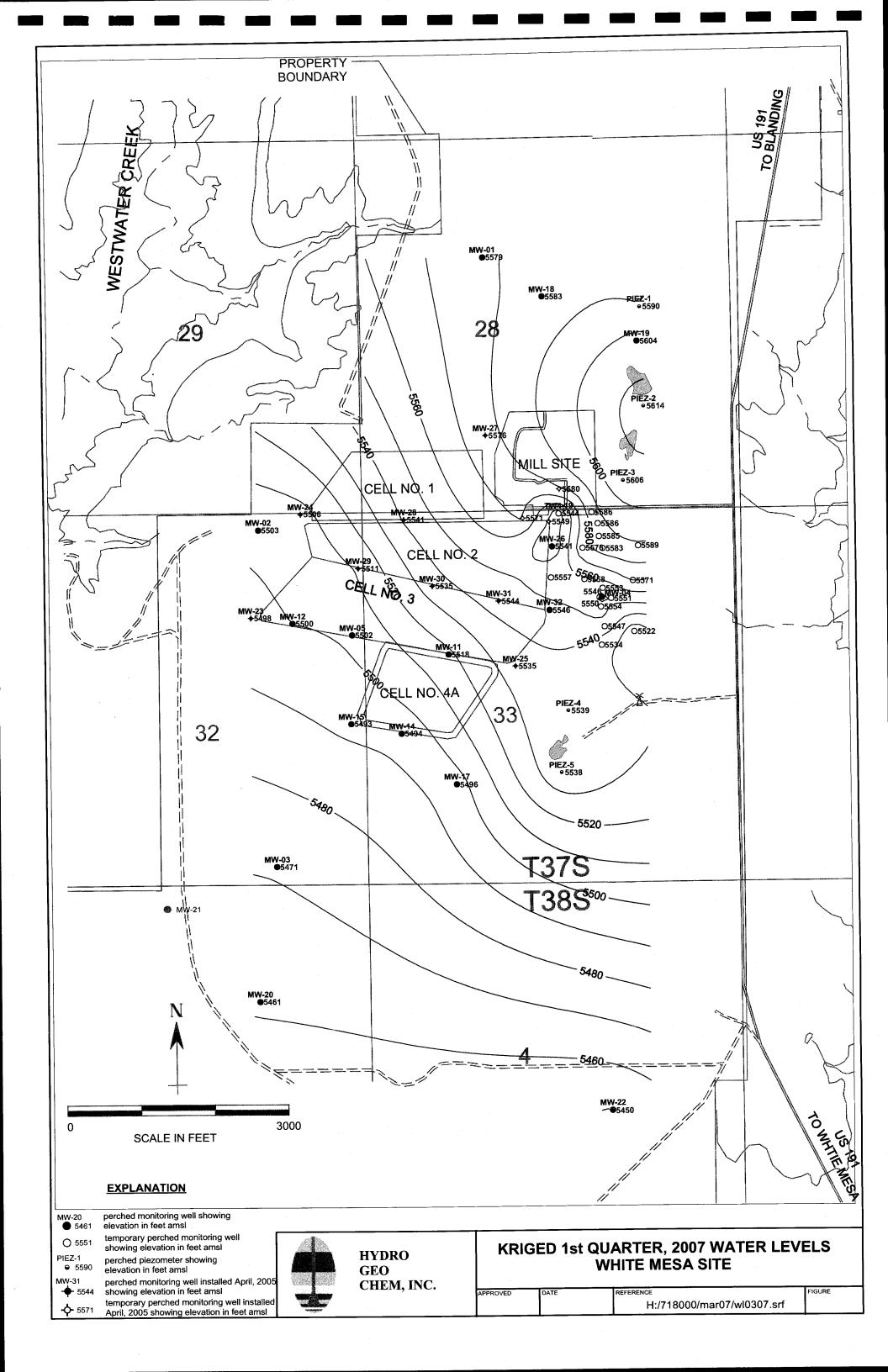
H:\718000LForms\Depth to Water.xts: Portrait

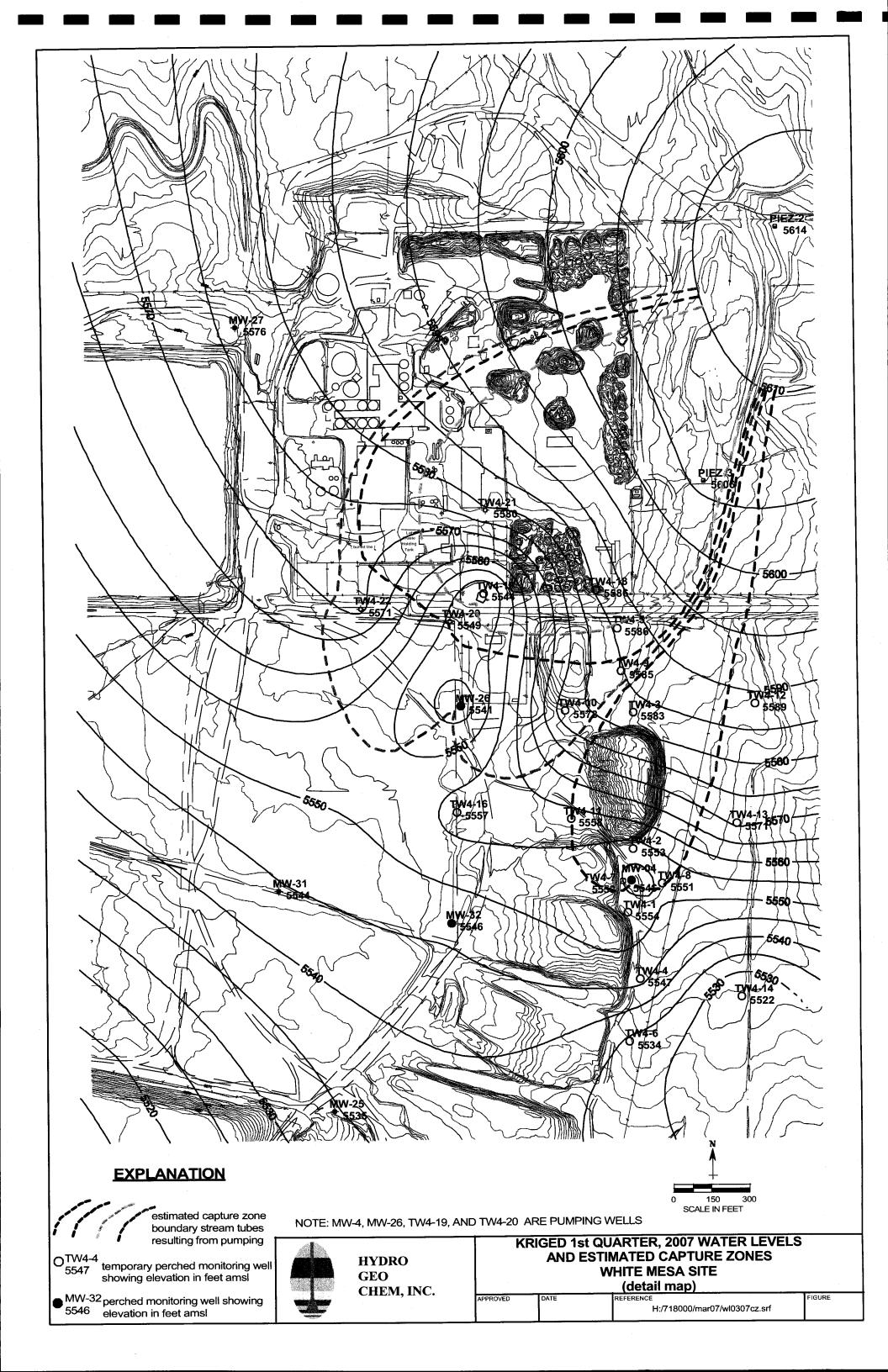
Water Meter: 561360 @ 0950

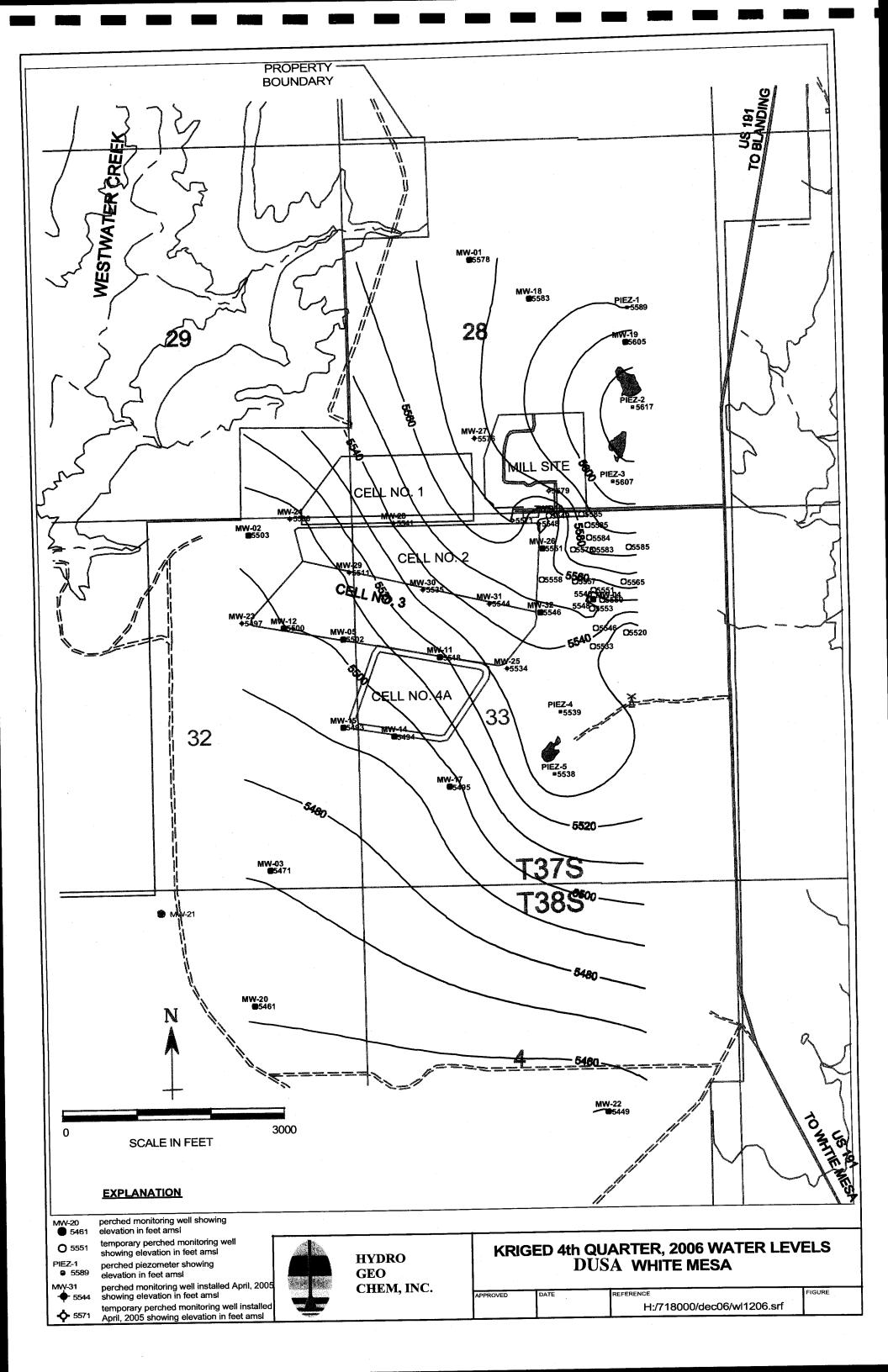
	m	mhq	616.45)					1
Date					to Wat	er			1
	Time		Time		Time	9	Time		1
3,21/07	07.50	MW-4	71.43				Flow.	4.30др	<u> </u>
							Meter	0886170	
	0808	TW4-15	78.03			_	Flow	2.309	2 m
		<u> </u>					Meter	2.30gs New-	Chang out
	1233	TW4-19	00 E1				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-
	18(1)()	1 W 7-13	87.31		-		Flow	5.80gp	
							Meter	0288160	}
								<u> </u>	
_	0803	TW420	92.93				Flow	590	
							Meter	5.90gpm 0238800	
		c.							
								l	
′									
		ı							
-	is interesting								

mmha 616.45

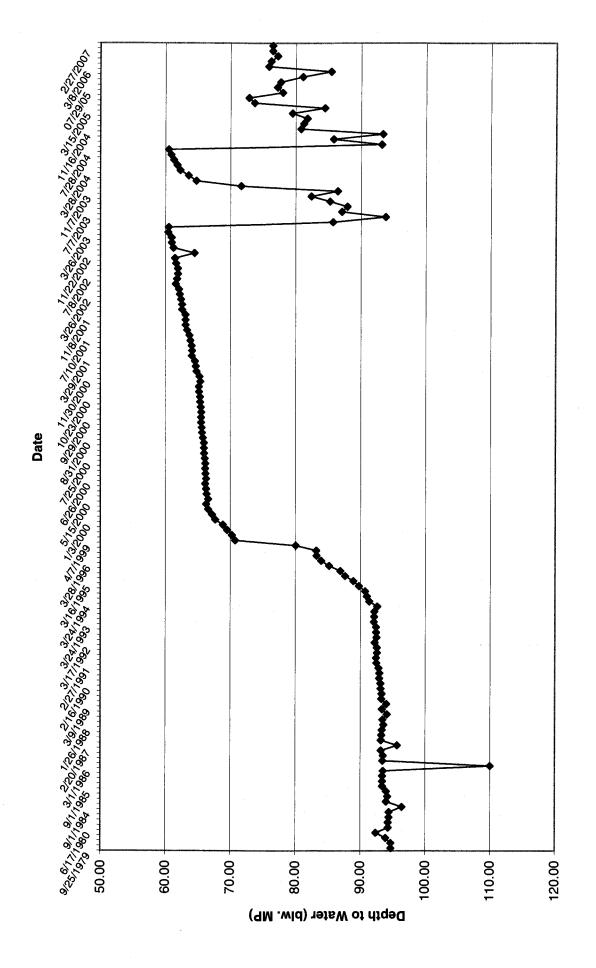
Date		Dept	h to Water		
Date	Time	Time	Time	Time	
3/21/07	07.50	Weil MW-4	depth P1,43	110	
	0849	TW4-A	71.48	4.30 gpm	
	0848	TW4-1	64.49		
	0825	TW4-2	71.35		
	0821	TW4-3	49.18		
	0851	TW4-4	66.67		1
	0815	TW4-5	55.38		
	0853	TW4-6	7479		
	0830	TW4-7	71.25		
	0838	TW4-8	70,78		
	0818	TW49	53.33		
	0813	TW4-10	56.18		
	09.38	TW4-11	65.90	٠	
	0903	TW4-12	3540	·	
ı	0906	6 TW4-13	50.46		
	0909	TW4-14	90.53		
,	0808	TW4-15	78.03	2.30 gpm -	Sĺòi
	0943	TW4-16	67.70	7'	
	0935	TW4-17	78.65		·
,	10.47	TW4-18	55.98		
	1233	TW4-19	89.51	5.80 gpm	
	0803	TW4-20 😘	9293	5.90 gpm	
	1038	TW4-21	61.30		
_ (2922	TW4-22	58 <i>0</i> 8		1
			·		7

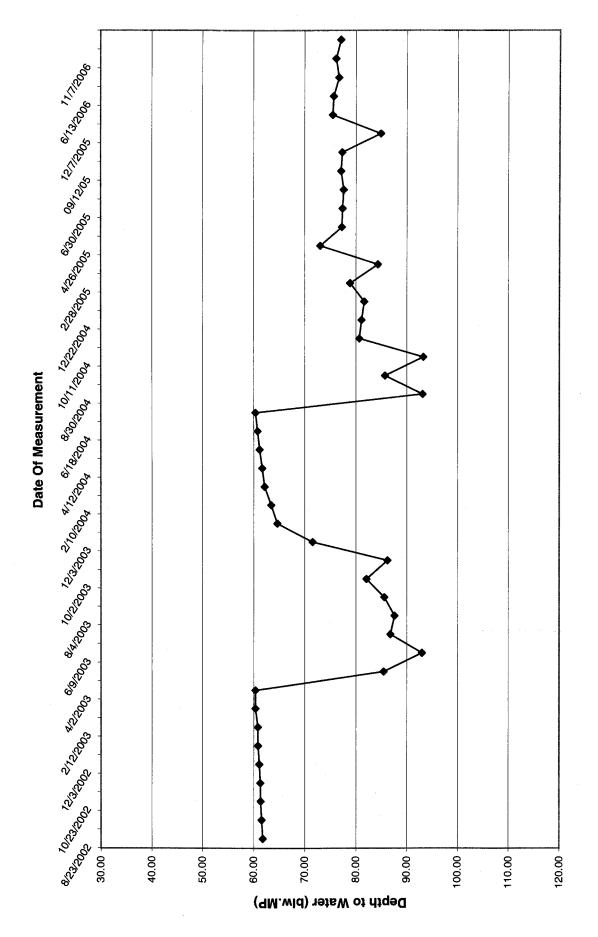

On my way to MW4- noticed Cap was off H17180000Formal Depth to Water, xie: Portrait + W4-11.

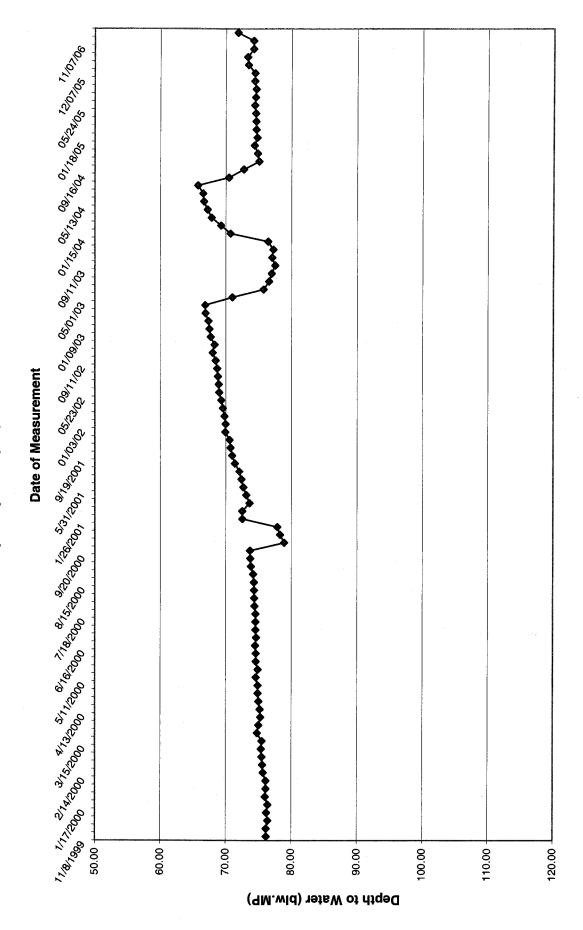

Jinmina GOVIV	mm	ha	621	.03
---------------	----	----	-----	-----

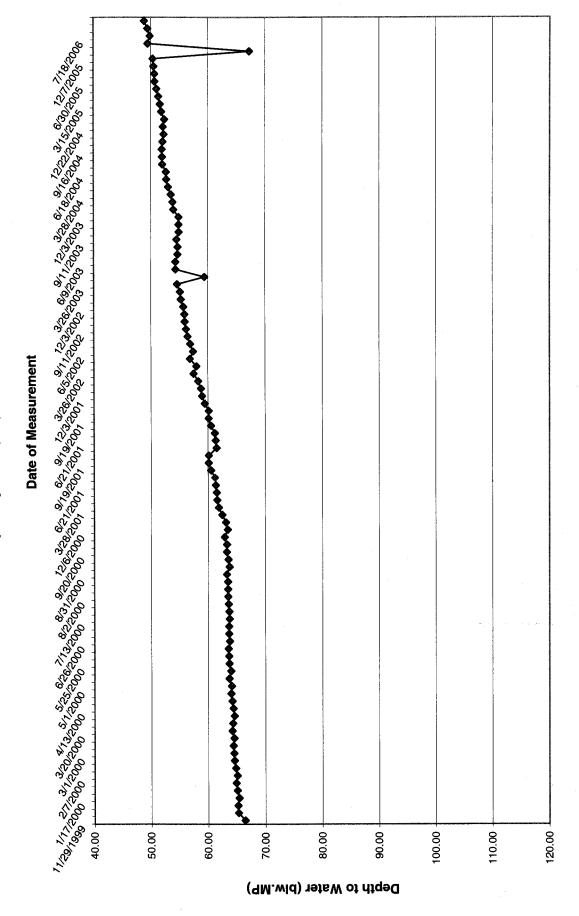

Date	Depth to Water									
	Time		Time		Time		Time	1		
3/26/07							,	-		
24234										
	1010	MW4	75.98				ri			
	1010	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12/10				Flow	4.3 gpm		
· -4/							Meter	0891130		
	1028	MW4-15	an 9a					No+		
		1111111	71.18				Flow	No+ Funnins		
							Meaer	0000080		
	0950	MW4-19	6 2 09							
	9150	11 10-1-11	02.81				Flow	5,8gpm 0327710		
	·			E.	<u> </u>		Meter	0327710		
	1043	MW4-20	7260				9-1	(0		
	132-132		16X16Q	/			Flow	6. Ogpm		
							Meter	0008880		
,										
		·								
		. 1								
	- SANA									
	<u> </u>									

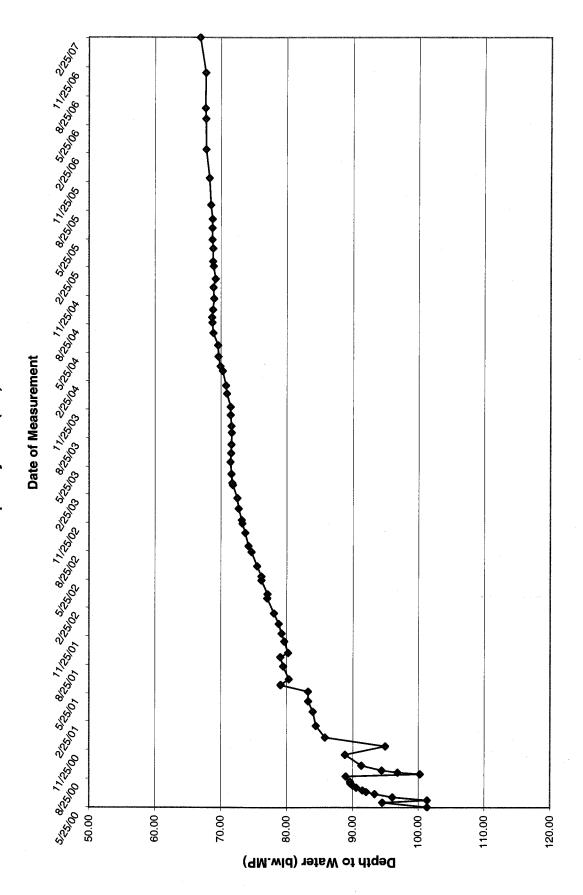
minha 616.45

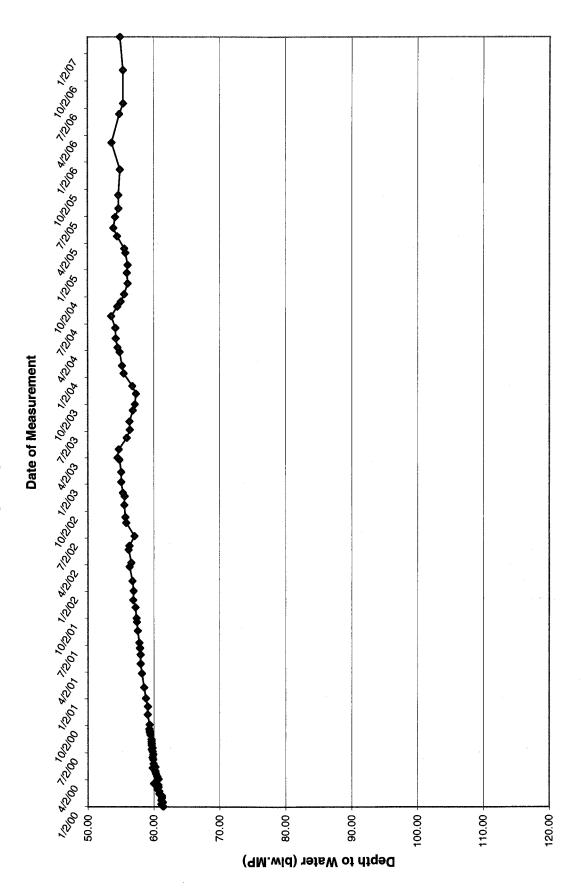

Date	Depth to Water										
	Time	Well	Time		Time		Time				
3/21/02											
	1154	MW20	79.38								
4 1.	1139	MW-22 P-1	67.95								
	1109	P_	65.40								
	1108	P-2	14.30								
	1100	P-3	31.66								
	0917	P-4	\$51.90								
	0921	P-5	46.47								
					-						
								·			
			· · · · · · · · · · · · · · · · · · ·				<u> </u>				
		· · · ·				· ·					
				·							
c											
		,									
	、心臓療法の										
		·									

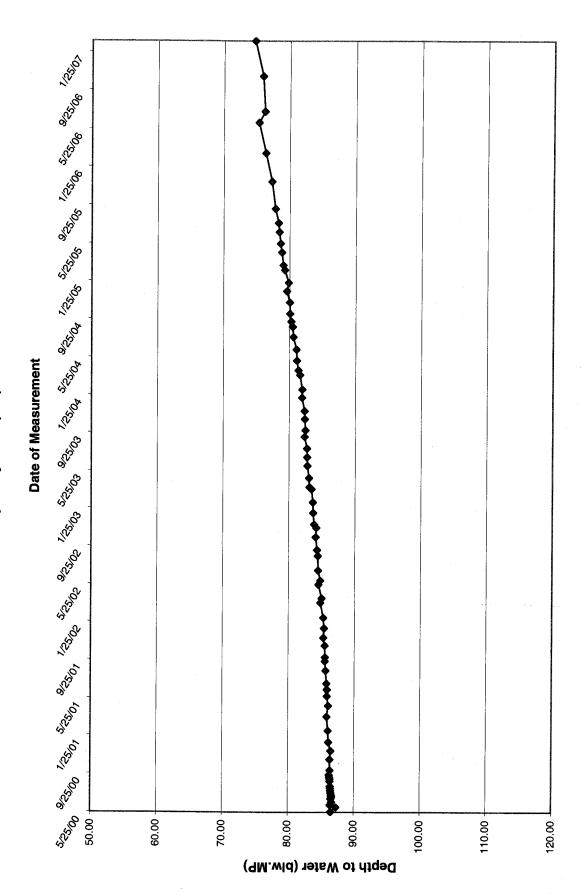



White Mesa Monitor Well 4 Depth Over Time

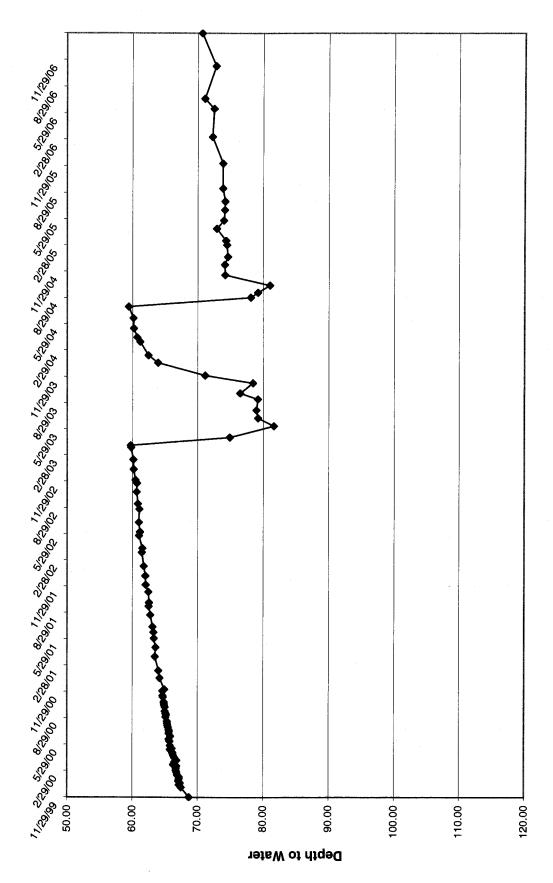

White Mesa Temporary Well (4-A) Over Time


White Mesa Mill Temporary Well (4-2) Water Level Over Time

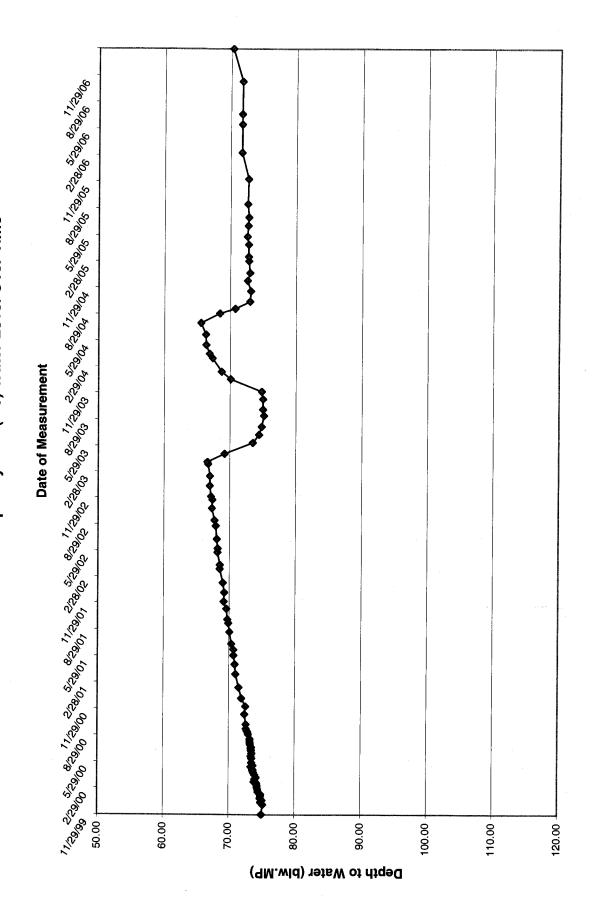

White Mesa Mill Temporary Well (4-3) Water Level Over Time


White Mesa Mill Temporary Well (4-4) Water Level Over Time

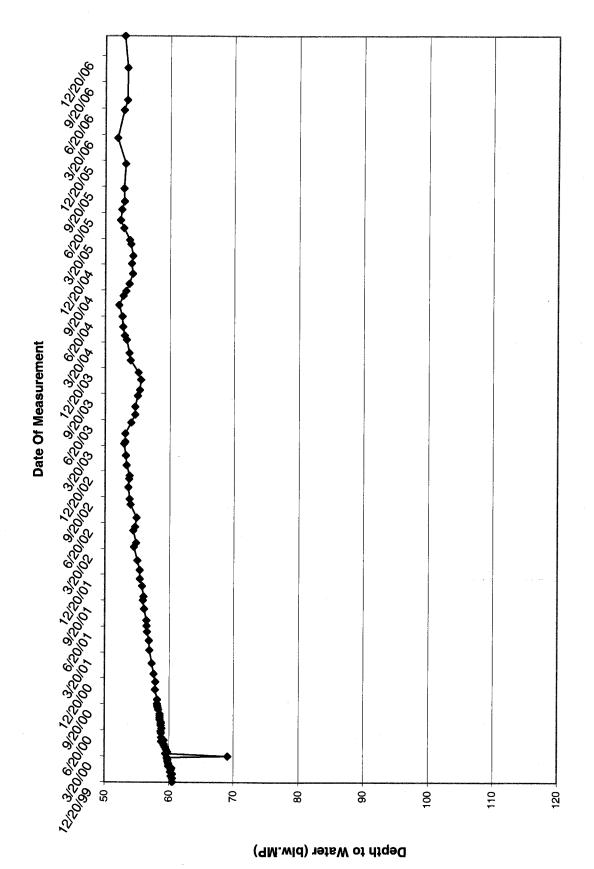
White Mesa Mill Temporary Well (4-5) Water Level Over Time



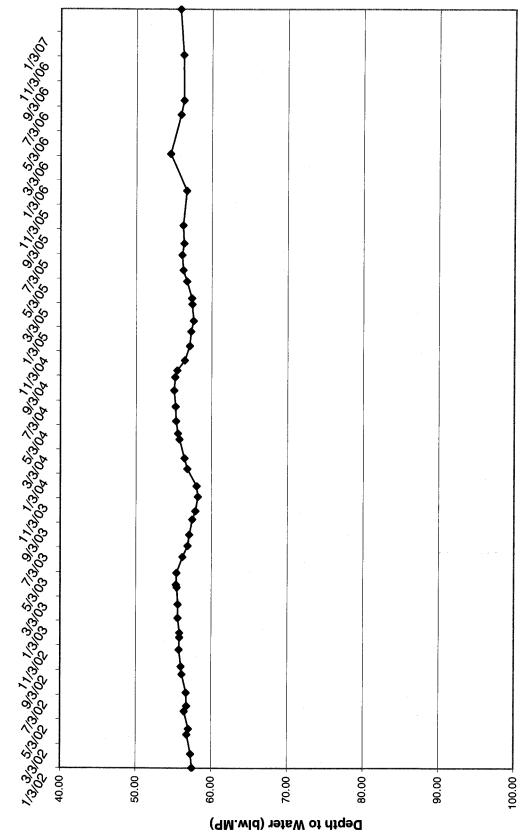
White Mesa Mill Temporary Well (4-6) Water Level Over Time



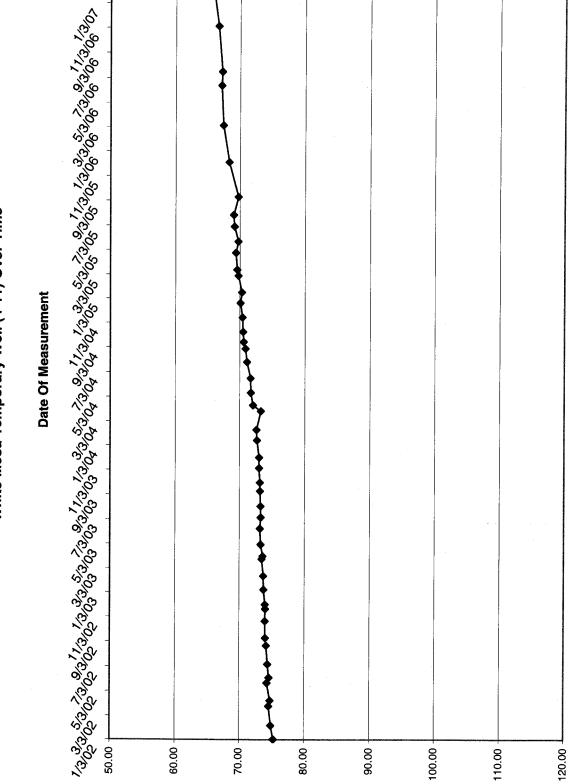
White Mesa Mill Temporary Well (4-7) Water Level Over Time



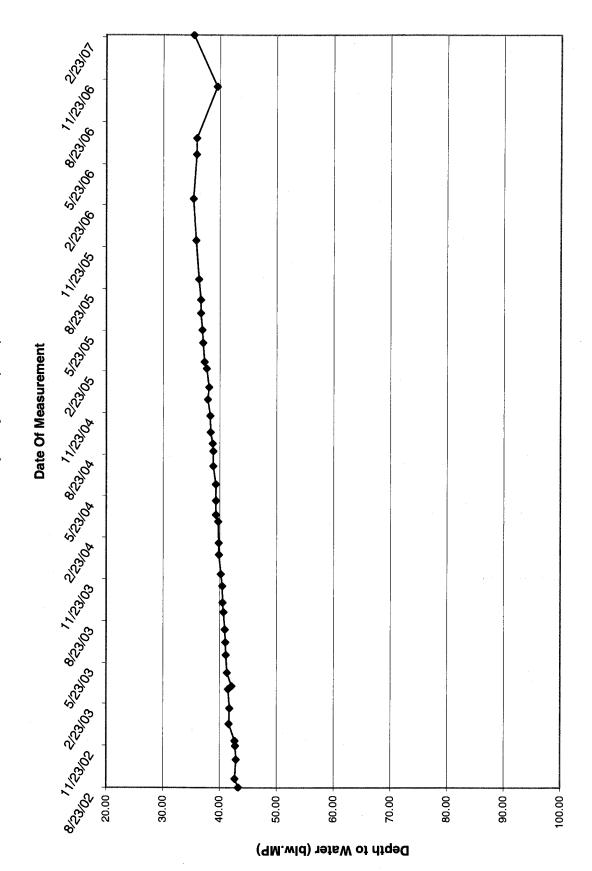
White Mesa Mill Temporary Well (4-8) Water Level Over Time



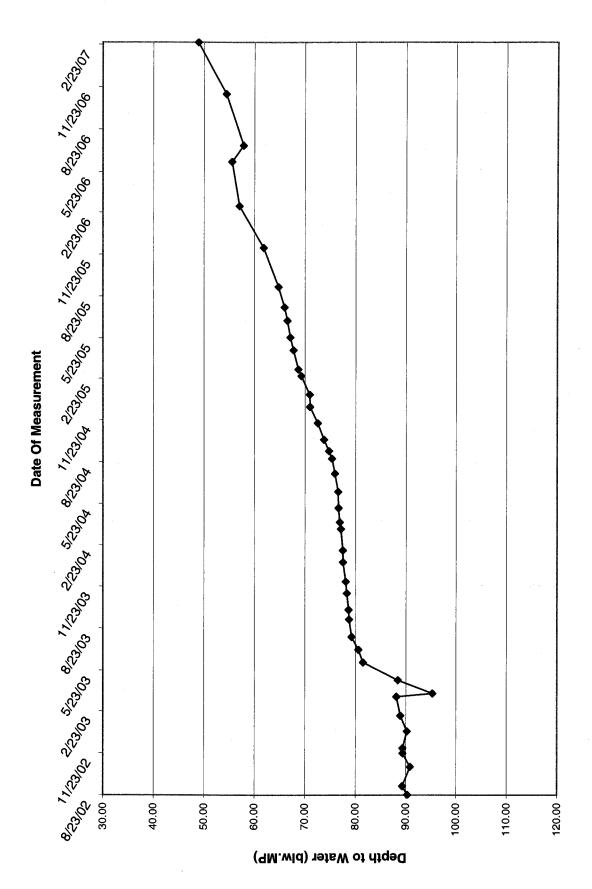
White Mesa Temporary Well (4-9) Over Time



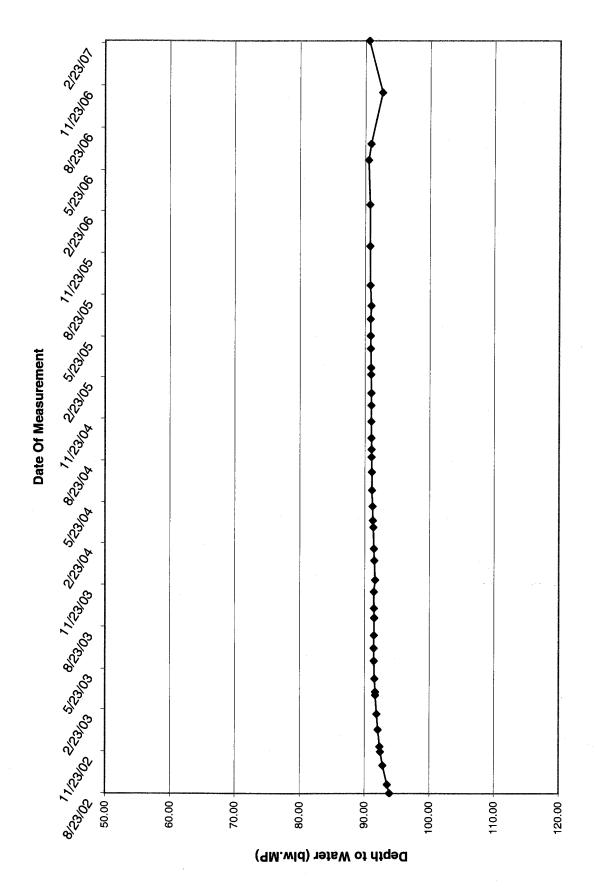
White Mesa Temporary Well (4-10) Over Time

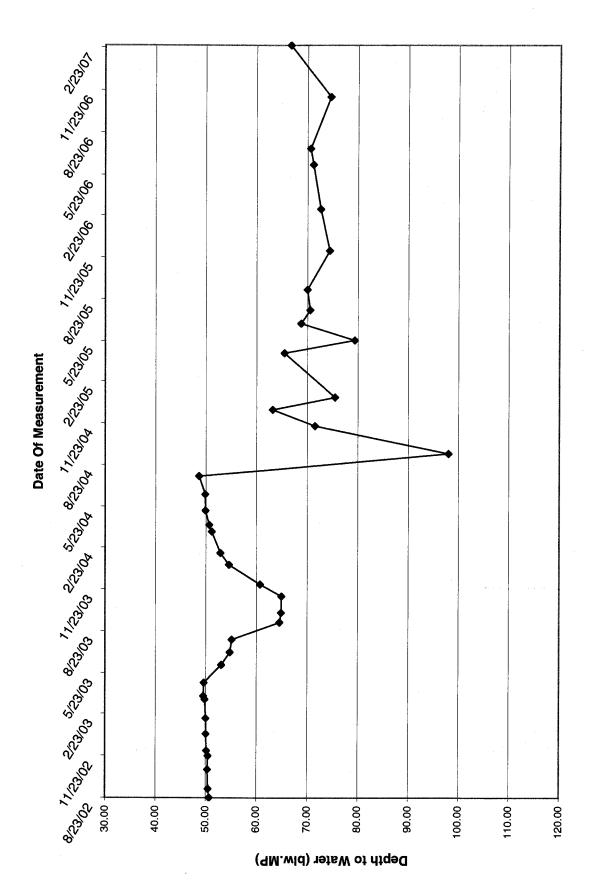


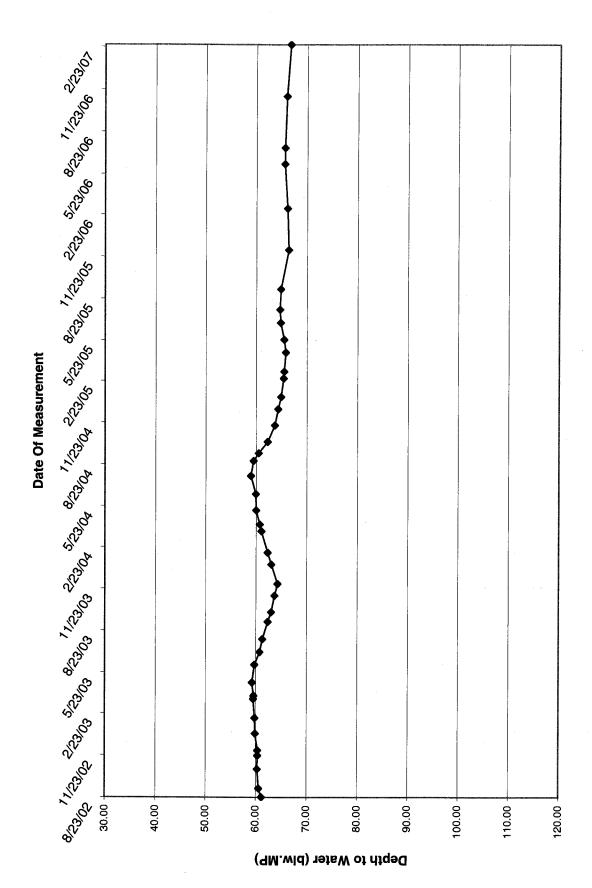
White Mesa Temporary Well (4-11) Over Time

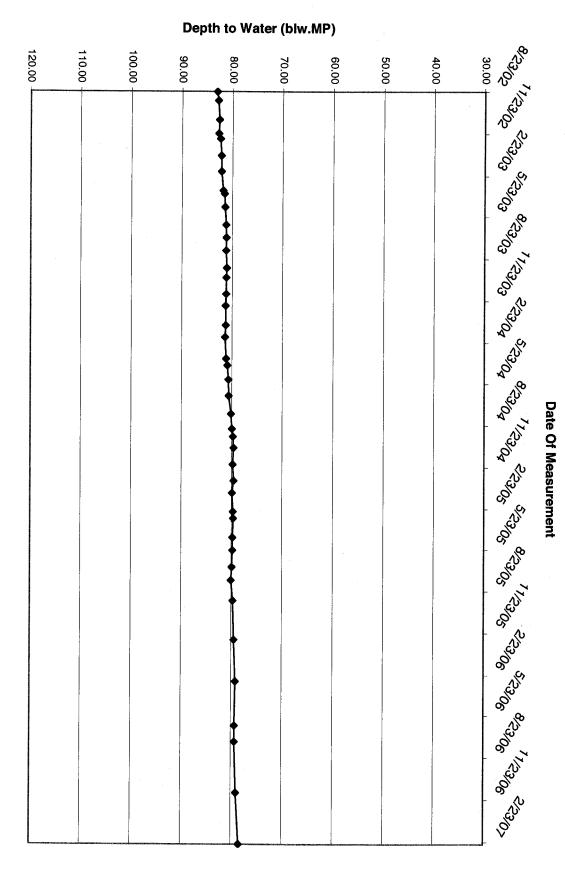


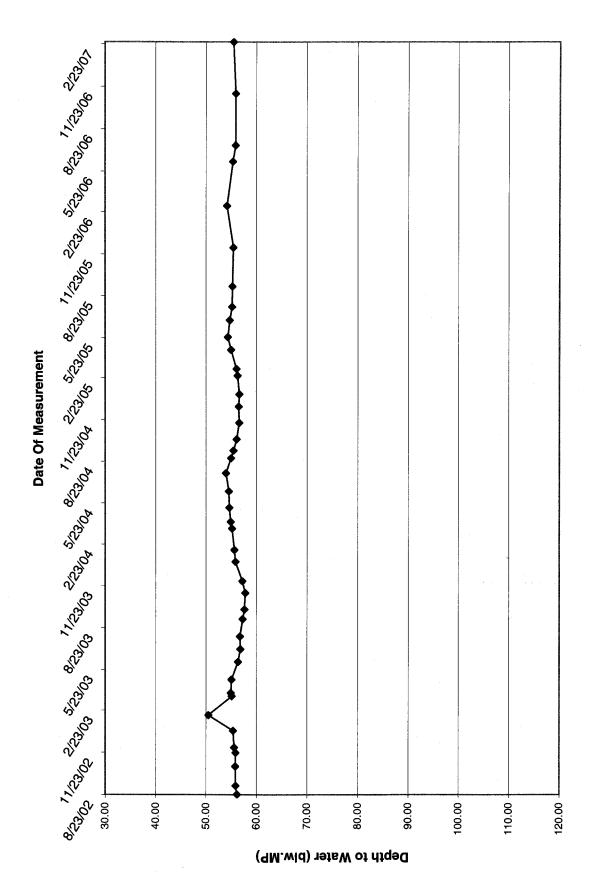
Depth to Water (blw.MP)

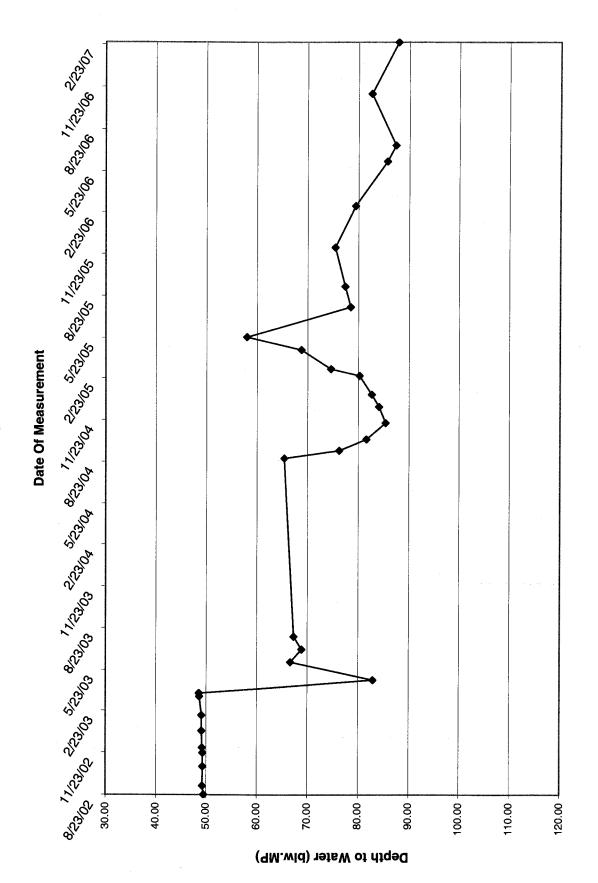

White Mesa Temporary Well (4-12) Over Time

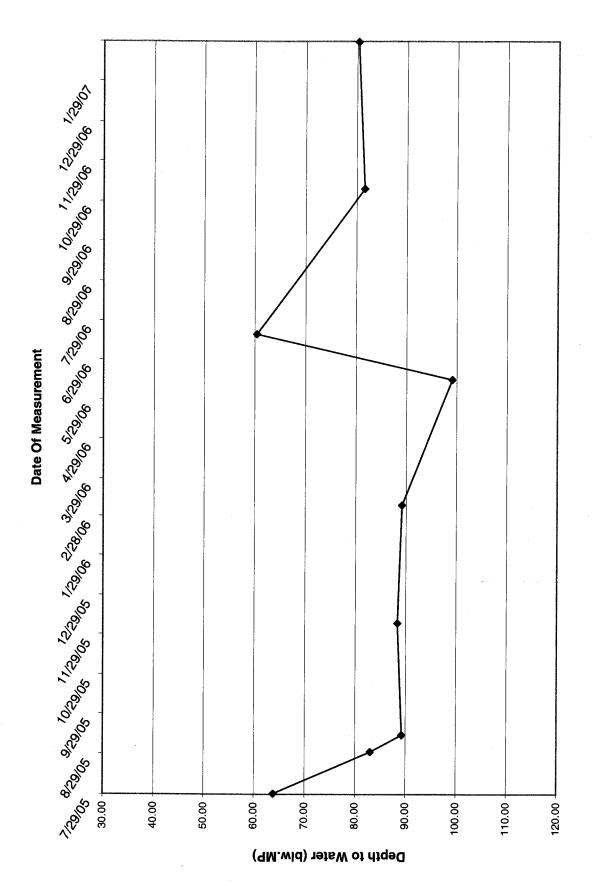

White Mesa Temporary Well (4-13) Over Time

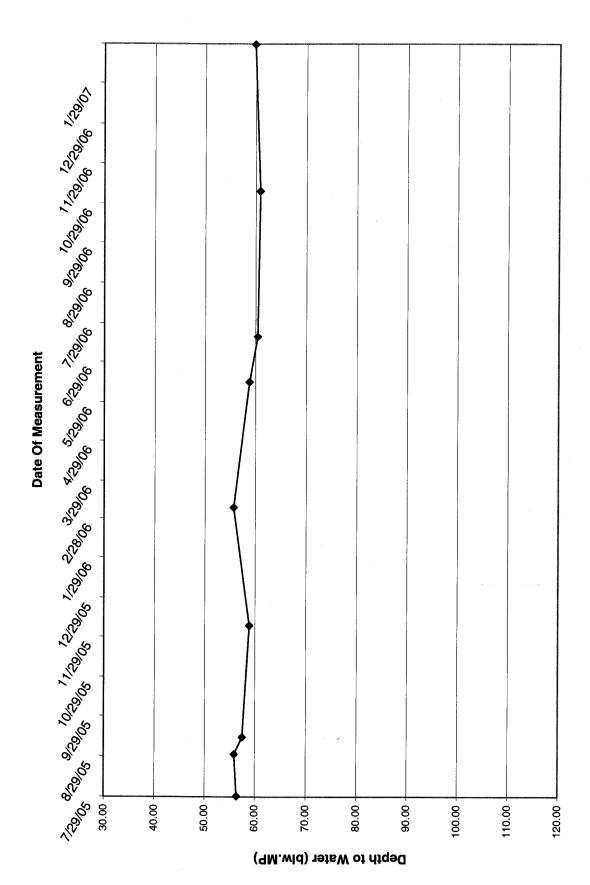

White Mesa Temporary Well (4-14) Over Time

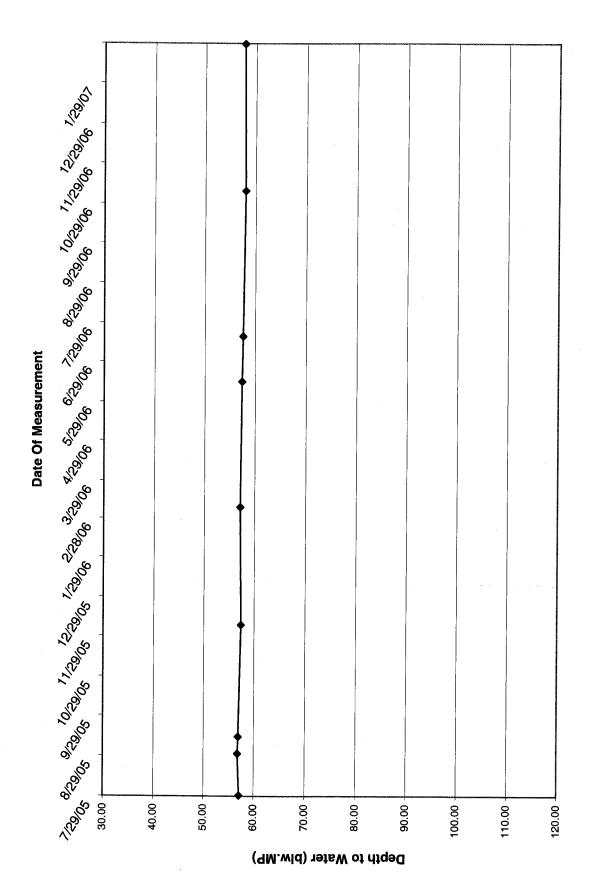

White Mesa Temporary Well (4-15) (MW-26) Over Time


White Mesa Temporary Well (4-16) Over Time


White Mesa Temporary Well (4-17) (MW-32) Over Time


White Mesa Temporary Well (4-18) Over Time


White Mesa Temporary Well (4-19) Over Time


White Mesa Temporary Well (4-20) Over Time

White Mesa Temporary Well (4-21) Over Time

White Mesa Temporary Well (4-22) Over Time

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56			,	123.6
5,527.63				9/25/1979	94.70	93.14	
5,527.63				10/10/1979	94.70	93.14	
5,528.43				1/10/1980	93.90	92.34	
5,529.93				3/20/1980	92.40	90.84	
5,528.03				6/17/1980	94.30	92.74	and the second
5,528.03				9/15/1980	94.30	92.74	
5,527.93				10/8/1980	94.40	92.84	
5,527.93				2/12/1981	94.40	92.84	
5,525.93				9/1/1984	96.40	94.84	
5,528.33				12/1/1984	94.00	92.44	
5,528.13				2/1/1985	94.20	92.64	
5,528.33				6/1/1985	94.00	92.44	
5,528.93				9/1/1985	93.40	91.84	
5,528.93				10/1/1985	93.40	91.84	
5,528.93				11/1/1985	93.40	91.84	
5,528.83				12/1/1985	93.50	91.94	
5,512.33				3/1/1986	110.00	108.44	
5,528.91				6/19/1986	93.42	91.86	
5,528.83				9/1/1986	93.50	91.94	
5,529.16				12/1/1986	93.17	91.61	
5,526.66				2/20/1987	95.67	94.11	
5,529.16				4/28/1987	93.17	91.61	
5,529.08				8/14/1987	93.25	91.69	
5,529.00				11/20/1987	93.33	91.77	
5,528.75				1/26/1988	93.58	92.02	
5,528.91				6/1/1988	93.42	91.86	
5,528.25				8/23/1988	94.08	92.52	
5,529.00				11/2/1988	93.33	91.77	* *
5,528.33				3/9/1989	94.00	92.44	
5,529.10				6/21/1989	93.23	91.67	
5,529.06				9/1/1989	93.27	91.71	
5,529.21				11/15/1989	93.12	91.56	
5,529.22				2/16/1990	93.11	91.55	
5,529.43				5/8/1990	92.90	91.34	
5,529.40				8/7/1990	92.93	91.37	
5,529.53			I	11/13/1990	92.80	91.24	
5,529.86				2/27/1991	92.47	90.91	
5,529.91				5/21/1991	92.42	90.86	
5,529.77				8/27/1991	92.56	91.00	
5,529.79				12/3/1991	92.54	90.98	
5,530.13				3/17/1992	92.20	90.64	
5,529.85				6/11/1992	92.48	90.92	
5,529.90				9/13/1992	92.43	90.87	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,529.92				12/9/1992	92.41	90.85	
5,530.25				3/24/1993	92.08	90.52	
5,530.20				6/8/1993	92.13	90.57	
5,530.19				9/22/1993	92.14	90.58	
5,529.75				12/14/1993	92.58	91.02	
5,530.98				3/24/1994	91.35	89.79	
5,531.35				6/15/1994	90.98	89.42	
5,531.62				8/18/1994	90.71	89.15	
5,532.58				12/13/1994	89.75	88.19	
5,533.42				3/16/1995	88.91	87.35	
5,534.70				6/27/1995	87.63	86.07	
5,535.44				9/20/1995	86.89	85.33	
5,537.16				12/11/1995	85.17	83.61	
5,538.37				3/28/1996	83.96	82.40	
5,539.10				6/7/1996	83.23	81.67	
5,539.13				9/16/1996	83.20	81.64	
5,542.29				3/20/1997	80.04	78.48	
5,551.58				4/7/1999	70.75	69.19	
5,552.08				5/11/1999	70.25	68.69	
5,552.83				7/6/1999	69.50	67.94	
5,553.47				9/28/1999	68.86	67.30	
5,554.63				1/3/2000	67.70	66.14	
5,555.13				4/4/2000	67.20	65.64	
5,555.73				5/2/2000	66.60	65.04	
5,556.03				5/11/2000	66.30	64.74	
5,555.73				5/15/2000	66.60	65.04	
5,555.98				5/25/2000	66.35	64.79	
5,556.05				6/9/2000	66.28	64.72	~
5,556.18				6/16/2000	66.15	64.59	
5,556.05				6/26/2000	66.28	64.72	
5,556.15				7/6/2000	66.18	64.62	
5,556.18				7/13/2000	66.15	64.59	
5,556.17				7/18/2000	66.16	64.60	
5,556.26				7/25/2000	66.07	64.51	
5,556.35				8/2/2000	65.98	64.42	
5,556.38				8/9/2000	65.95	64.39	
5,556.39				8/15/2000	65.94	64.38	
5,556.57				8/31/2000	65.76	64.20	
5,556.68				9/8/2000	65.65	64.09	
5,556.73				9/13/2000	65.60	64.04	
5,556.82				9/20/2000	65.51	63.95	
5,556.84				9/29/2000	65.49	63.93	
5,556.81				10/5/2000	65.52	63.96	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56			<u> </u>	123.6
5,556.89				10/12/2000	65.44	63.88	
5,556.98				10/19/2000	65.35	63.79	
5,557.01				10/23/2000	65.32	63.76	
5,557.14				11/9/2000	65.19	63.63	
5,557.17				11/14/2000	65.16	63.60	
5,556.95				11/21/2000	65.38	63.82	
5,557.08				11/30/2000	65.25	63.69	
5,557.55				12/7/2000	64.78	63.22	
5,557.66				1/14/2001	64.67	63.11	
5,557.78				2/9/2001	64.55	62.99	
5,558.28				3/29/2001	64.05	62.49	
5,558.23				4/30/2001	64.10	62.54	
5,558.31				5/31/2001	64.02	62.46	
5,558.49				6/22/2001	63.84	62.28	
5,558.66				7/10/2001	63.67	62.11	
5,559.01				8/20/2001	63.32	61.76	
5,559.24				9/19/2001	63.09	61.53	
5,559.26				10/2/2001	63.07	61.51	
5,559.27				11/8/2001	63.06	61.50	
5,559.77				12/3/2001	62.56	61.00	
5,559.78				1/3/2002	62.55	60.99	
5,559.96				2/6/2002	62.37	60.81	
5,560.16				3/26/2002	62.17	60.61	
5,560.28				4/9/2002	62.05	60.49	
5,560.76				5/23/2002	61.57	60.01	
5,560.58				6/5/2002	61.75	60.19	
5,560.43				7/8/2002	61.90	60.34	
5,560.44				8/23/2002	61.89	60.33	-
5,560.71				9/11/2002	61.62	60.06	
5,560.89				10/23/2002	61.44	59.88	
5,557.86				11/22/2002	64.47	62.91	
5,561.10				12/3/2002	61.23	59.67	
5,561.39				1/9/2003	60.94	59.38	
5,561.41				2/12/2003	60.92	59.36	
5,561.93				3/26/2003	60.40	58.84	
5,561.85				4/2/2003	60.48	58.92	
5,536.62				5/1/2003	85.71	84.15	
5,528.56				6/9/2003	93.77	92.21	
5,535.28				7/7/2003	87.05	85.49	
5,534.44				8/4/2003	87.89	86.33	
5,537.10				9/11/2003	85.23	83.67	
5,539.96				10/2/2003	82.37	80.81	
5,535.91				11/7/2003	86.42	84.86	

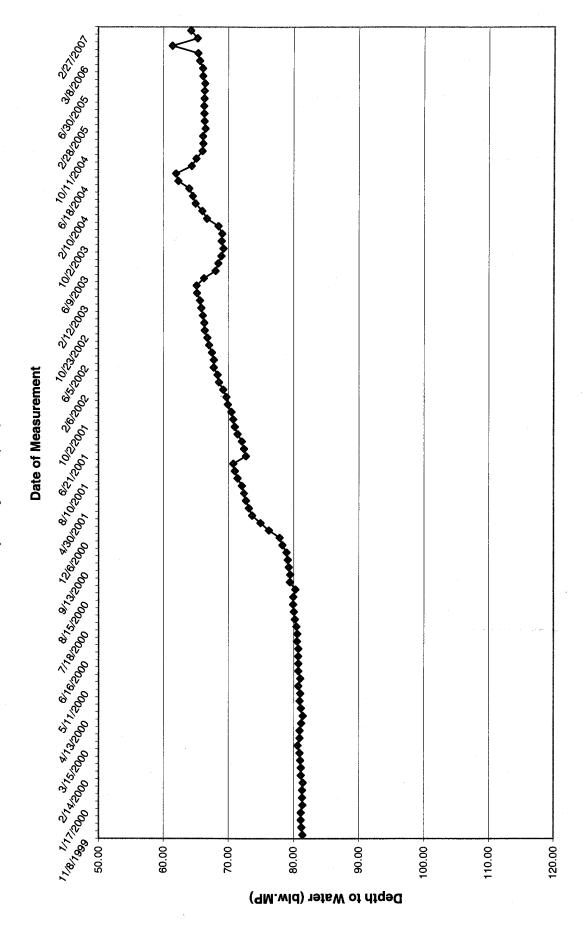
Water Elevation (WL)	Land Surface (LSD) 5,620.77	Measuring Point Elevation (MP) 5,622.33	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,550.70	5,02017	3,022.33	1.50	12/3/2003	71.63	70.07	123.0
5,557.58				1/15/2004	64.75	70.07	
5,558.80				2/10/2004		63.19	
5,560.08					63.53	61.97	
5,560.55				3/28/2004	62.25	60.69	
5,561.06				4/12/2004	61.78	60.22	
5,561.48				5/13/2004	61.27	59.71	
5,561.86				6/18/2004	60.85	59.29	
5,529.17				7/28/2004	60.47	58.91	
5,536.55				8/30/2004	93.16	91.60	
5,529.00				9/16/2004	85.78	84.22	
5,541.55				10/11/2004	93.33	91.77	
5,541.12				11/16/2004	80.78	79.22	
5,540.59				12/22/2004	81.21	79.65	
5,542.85				1/18/2005	81.74	80.18	
5,537.91				2/28/2005	79.48	77.92	
5,548.67				3/15/2005	84.42	82.86	
5,549.53				4/26/2005	73.66	72.10	
5,544.36				5/24/2005	72.80	71.24	
5,545.16				6/30/2005	77.97	76.41	
5,544.67				07/29/05	77.17	75.61	
5,541.28				09/12/05	77.66	76.10	
5,536.96				09/27/05	81.05	79.49	
5,546.49				12/7/2005	85.37	83.81	
5,546.15				3/8/2006	75.84	74.28	
5,545.15				6/13/2006	76.18	74.62	
5,545.91				7/18/2006	77.18	75.62	
5,545.90				11/17/206	76.42	74.86	
3,343.70				2/27/2007	76.43	74.87	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.51	5,622.31	1.80			· · · · · · · · · · · · · · · · · · ·	121.33
5,560.53				8/23/2002	61.78	59.98	
5,560.76				9/11/2002	61.55	59.75	
5,560.96				10/23/2002	61.35	59.55	
5,561.00				11/22/2002	61.31	59.51	
5,561.19				12/3/2002	61.12	59.32	
5,561.46				1/9/2003	60.85	59.05	
5,561.48				2/12/2003	60.83	59.03	
5,561.96				3/26/2003	60.35	58.55	
5,561.94				4/2/2003	60.37	58.57	
5,536.88				5/1/2003	85.43	83.63	
5,529.35				6/9/2003	92.96	91.16	
5,535.54				7/7/2003	86.77	84.97	
5,534.74				8/4/2003	87.57	85.77	
5,536.74				9/11/2003	85.57	83.77	
5,540.24				10/2/2003	82.07	80.27	
5,536.13				11/7/2003	86.18	84.38	
5,550.77				12/3/2003	71.54	69.74	
5,557.67				1/15/2004	64.64	62.84	
5,558.87				2/10/2004	63.44	61.64	
5,560.16				3/28/2004	62.15	60.35	
5,560.63				4/12/2004	61.68	59.88	
5,561.14				5/13/2004	61.17	59.37	
5,561.56				6/18/2004	60.75	58.95	
5,561.95				7/28/2004	60.36	58.56	
5,529.25				8/30/2004	93.06	91.26	
5,536.63				9/16/2004	85.68	83.88	
5,529.08				10/11/2004	93.23	91.43	
5,541.63				11/16/2004	80.68	78.88	. •
5,541.20				12/22/2004	81.11	79.31	
5,540.67				1/18/2005	81.64	79.84	
5,543.45				2/28/2005	78.86	77.06	
5,537.99				3/15/2005	84.32	82.52	
5,549.27				4/26/2005	73.04	71.24	
5,545.08				5/24/2005	77.23	75.43	
5,544.94				6/30/2005	77.37	75.57	
5,544.71				07/29/05	77.60	75.80	
5,545.23				09/12/05	77.08	75.28	
5,545.00				09/27/05	77.31	75.51	
5,537.45				12/7/2005	84.86	83.06	
5,546.86				3/8/2006	75.45	73.65	
5,546.66				6/13/2006	75.65	73.85	
5,545.63				7/18/2006	76.68	74.88	
5,546.18				11/7/2006	76.13	74.33	
					,		

5,545.30

2/27/2007

77.01


75.21

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,625.00	1.90	<u>~~</u> _			121.125
5,548.85				11/8/1999	76.15	74.25	
5,548.85				11/9/1999	76.15	74.25	
5,548.60				1/2/2000	76.40	74.50	
5,548.80				1/10/2000	76.20	74.30	
5,548.60				1/17/2000	76.40	74.50	
5,549.00				1/24/2000	76.00	74.10	
5,548.90				2/1/2000	76.10	74.20	
5,548.90				2/7/2000	76.10	74.20	
5,549.30				2/14/2000	75.70	73.80	
5,549.40				2/23/2000	75.60	73.70	
5,549.50				3/1/2000	75.50	73.60	
5,549.60				3/8/2000	75.40	73.50	
5,549.50				3/15/2000	75.50	73.60	
5,550.20				3/20/2000	74.80	72.90	
5,550.00				3/29/2000	75.00	73.10	
5,549.70				4/4/2000	75.30	73.40	
5,549.80				4/13/2000	75.20	73.30	
5,550.00				4/21/2000	75.00	73.10	
5,550.10				4/28/2000	74.90	73.00	
5,550.10				5/1/2000	74.90	73.00	
5,550.40				5/11/2000	74.60	72.70	
5,550.10				5/15/2000	74.90	73.00	
5,550.40				5/25/2000	74.60	72.70	
5,550.40				6/9/2000	74.60	72.70	
5,550.50				6/16/2000	74.50	72.60	
5,550.35				6/26/2000	74.65	72.75	
5,550.45				7/6/2000	74.55	72.65	
5,550.45				7/13/2000	74.55	72.65	-
5,550.46				7/18/2000	74.54	72.64	
5,550.61				7/27/2000	74.39	72.49	
5,550.66				8/2/2000	74.34	72.44	
5,550.68				8/9/2000	74.32	72.42	
5,550.70				8/15/2000	74.30	72.40	
5,550.82				8/31/2000	74.18	72.28	
5,551.15				9/8/2000	73.85	71.95	
5,551.25				9/13/2000	73.75	71.85	
5,551.32				9/20/2000	73.68	71.78	
5,546.11				10/5/2000	78.89	76.99	
5,546.75				11/9/2000	78.25	76.35	
5,547.16				12/6/2000	77.84	75.94	
5,552.46				1/26/2001	72.54	70.64	
5,552.48				2/2/2001	72.52	70.62	
5,551.38				3/29/2001	73.62	71.72	
•					-		

5,551.87	4/30/2001	73.13	71.23
5,552.31	5/31/2001	72.69	70.79
5,552.61	6/21/2001	72.39	70.49
5,552.92	7/10/2001	72.08	70.18
5,553.60	8/20/2001	71.40	69.50
5,554.01	9/19/2001	70.99	69.09
5,554.26	10/2/2001	70.74	68.84
5,554.42	11/08/01	70.58	68.68
5,555.07	12/03/01	69.93	68.03
5,555.02	01/03/02	69.98	68.08
5,555.19	02/06/02	69.81	67.91
5,555.43	03/26/02	69.57	67.67
5,555.67	04/09/02	69.33	67.43
5,556.01	05/23/02	68.99	67.09
5,556.07	06/05/02	68.93	67.03
5,556.19	07/08/02	68.81	66.91
5,556.32	08/23/02	68.68	66.78
5,556.53	09/11/02	68.47	66.57
5,557.00	10/23/02	68.00	66.10
5,556.70	11/22/02	68.30	66.40
5,557.29	12/03/02	67.71	65.81
5,557.48	01/09/03	67.52	65.62
5,557.63	02/12/03	67.37	65.47
5,558.11	03/26/03	66.89	64.99
5,558.15	04/02/03	66.85	64.95
5,553.99	05/01/03	71.01	69.11
5,549.26	06/09/03	75.74	73.84
5,548.42	07/07/03	76.58	74.68
5,548.03	08/04/03	76.97	75.07
5,547.50	09/11/03	77.50	75.60
5,547.96	10/02/03	77.04	75.14
5,547.80	11/07/03	77.20	75.30
5,548.57	12/03/03	76.43	74.53
5,554.28	01/15/04	70.72	68.82
5,555.74	02/10/04	69.26	67.36
5,557.18	03/28/04	67.82	65.92
5,557.77	04/12/04	67.23	65.33
5,558.35	05/13/04	66.65	64.75
5,558.47	06/18/04	66.53	64.63
5,559.28	07/28/04	65.72	63.82
5,554.54	08/30/04	70.46	68.56
5,552.25	09/16/04	72.75	70.85
5,549.93	10/11/04	75.07	73.17
5,550.17	11/16/04	74.83	72.93
5,550.65	12/22/04	74.35	72.45
5,550.23	01/18/05	74.77	72.87
5,550.37	02/28/05	74.63	72.73
5,550.41	03/15/05	74.59	72.69
5,550.46	04/26/05	74.54	72.64
5,550.60	05/24/05	74.40	72.50
5,550.49	06/30/05	74.51	72.61
5,550.39	07/29/05	74.61	72.71

5,550.61		09/12/05	74.39	72.49
5,550.57		12/07/05	74.43	72.53
5,551.58		03/08/06	73.42	71.52
5,551.70	*	06/14/06	73.3	71.40
5,550.80		07/18/06	74.20	72.30
5550.80		11/07/06	74.20	72.30
5553.17		2/27/2007	71.83	69.93

White Mesa Mill Temporary Well (4-1) Water Level Over Time

Water Elevation Elevation (WL) Land Cand (Surface (WL)) Point Elevation (WL) Length Of (MP) Date Of (MI) Water (Water (Water) (Water) Water (Water) (Water) Water (Water) (Water) Water (Water) Wate						Total or		
Elevation Cut. Cu			Measuring			Measured	Total	
WL CLSD CMP Riser (L) Monitoring (blw.MP) (blw.LSD) Well 2	Water	Land	Point			Depth to	Depth to	Total
z 5,540,98 11/8/1999 81.35 80.33 5,541,13 11/9/1999 81.20 80.18 5,541,23 11/10/2000 81.10 80.08 5,541,23 11/10/2000 81.10 80.08 5,540,98 11/17/2000 81.30 80.28 5,541,03 12/17/2000 81.30 80.28 5,541,23 2/17/2000 81.40 80.08 5,541,23 2/17/2000 81.40 80.08 5,541,23 2/14/2000 81.10 80.08 5,541,23 2/14/2000 81.10 80.08 5,541,23 2/14/2000 81.10 80.08 5,541,23 3/1/2000 81.10 80.08 5,541,33 3/1/2000 80.90 79.88 5,541,43 3/20/2000 80.90 79.88 5,541,43 3/20/2000 80.90 79.88 5,541,23 4/21/2000 81.15 80.13 5,541,23 4/21/2000 81.15 80.13	Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
5,540,98 11/8/1999 81,35 80,33 5,541,13 11/9/1999 81,20 80,18 5,541,23 11/10/2000 81,10 80,08 5,541,23 11/10/2000 81,30 80,28 5,540,98 11/17/2000 81,30 80,28 5,541,03 21/1/2000 81,30 80,28 5,541,03 21/1/2000 81,40 80,38 5,541,23 21/14/2000 81,10 80,08 5,541,23 21/14/2000 81,10 80,08 5,541,23 21/3/2000 81,00 79,98 5,541,33 31/1/2000 81,00 79,98 5,541,33 31/15/2000 80,60 79,88 5,541,43 3/29/2000 80,90 79,88 5,541,13 3/29/2000 80,90 79,88 5,541,13 3/29/2000 80,90 79,88 5,541,13 4/13/2000 81,40 80,38 5,541,33 5/12/200 81,0 79,98 5,541,33	(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,541.13 11/9/1999 81.20 80.18 5,541.23 11/2/2000 81.10 80.08 5,541.23 11/10/2000 81.35 80.33 5,541.03 11/2/2000 81.30 80.28 5,541.03 2/1/2000 81.30 80.28 5,540.93 2/7/2000 81.40 80.38 5,541.23 2/14/2000 81.10 80.08 5,541.23 2/23/2000 81.10 80.08 5,541.33 3/1/2000 81.00 79.98 5,541.43 3/8/2000 80.90 79.88 5,541.43 3/20/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.33 3/1/2000 81.15 80.13 5,541.43 3/29/2000 80.90 79.88 5,541.33 3/1/2000 81.10 80.98 5,541.33 3/1/2000 81.10 80.38 5,541.63 5/1/2000	Z	5,620.77	5,622.33	1.02				111.04
5,541.23 1/2/2000 81.10 80.08 5,541.23 1/10/2000 81.13 80.08 5,540.98 1/17/2000 81.35 80.33 5,541.03 1/24/2000 81.30 80.28 5,541.03 2/17/2000 81.30 80.28 5,540.93 2/7/2000 81.40 80.38 5,541.23 2/14/2000 81.10 80.08 5,541.33 3/1/2000 81.00 79.98 5,541.43 3/8/2000 80.90 79.88 5,541.43 3/20/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.33 3/1/2000 81.10 80.08 5,541.34 3/29/2000 80.90 79.88 5,541.33 4/13/2000 81.10 80.08 5,541.63 5/1/2000 81.00 79.98 5,541.63 <	5,540.98				11/8/1999	81.35	80.33	
5,541.23 1/10/2000 81.10 80.08 5,540.98 1/17/2000 81.35 80.33 5,541.03 1/24/2000 81.30 80.28 5,541.03 2/1/2000 81.30 80.28 5,540.93 2/1/2000 81.40 80.38 5,541.23 2/14/2000 81.10 80.08 5,541.33 3/1/2000 81.00 79.98 5,541.43 3/8/2000 80.90 79.88 5,541.73 3/15/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,541.33 3/29/2000 80.90 79.88 5,541.34 4/28/2000 81.10 80.08 5,541.33 5/1/2000 81.10 80.08 5,541.63 5/1/2000 81.00 79.98 5,541.63 5/1/2000 80.00 79.68 5,541.63 <td< td=""><td>5,541.13</td><td></td><td></td><td></td><td>11/9/1999</td><td>81.20</td><td>80.18</td><td></td></td<>	5,541.13				11/9/1999	81.20	80.18	
5,540,98 1/17/2000 81.35 80.33 5,541,03 1/24/2000 81.30 80.28 5,541,03 2/1/2000 81.30 80.28 5,540,93 2/7/2000 81.40 80.38 5,541,23 2/14/2000 81.10 80.08 5,541,33 3/12000 81.00 79.98 5,541,33 3/12000 80.90 79.88 5,541,33 3/15/2000 80.60 79.58 5,541,43 3/20/2000 80.60 79.58 5,541,43 3/29/2000 80.90 79.88 5,541,13 3/29/2000 80.90 79.88 5,541,13 3/29/2000 80.90 79.88 5,541,13 3/29/2000 80.90 79.88 5,541,13 3/29/2000 80.90 79.88 5,541,23 4/13/2000 81.40 80.38 5,541,33 5/12000 81.00 80.90 5,541,33 5/11/2000 80.90 79.88 5,541,63 5/11/2000 80.70 79.68 5,541,63 5/25/2000	5,541.23				1/2/2000	81.10	80.08	
5,541.03 1/24/2000 81.30 80.28 5,541.03 2/1/2000 81.30 80.28 5,540.93 2/7/2000 81.40 80.38 5,541.23 2/14/2000 81.10 80.08 5,541.23 2/23/2000 81.10 80.08 5,541.33 3/1/2000 81.00 79.98 5,541.73 3/5/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.18 4/4/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,541.23 4/13/2000 81.10 80.08 5,541.33 5/1/2000 80.90 79.88 5,541.33 5/1/2000 80.90 79.88 5,541.63 5/1/2000 80.70 79.68 5,541.63 5/1/2000 80.70 79.68 5,541.65 6/16/2000 80.70 79.68 5,541.99 7/1/3/2000	5,541.23				1/10/2000	81.10	80.08	
5,541.03 2/1/2000 81.30 80.28 5,540.93 2/7/2000 81.40 80.38 5,541.23 2/14/2000 81.10 80.08 5,541.23 2/23/2000 81.10 80.08 5,541.33 3/1/2000 81.00 79.98 5,541.43 3/8/2000 80.90 79.88 5,541.43 3/20/2000 80.90 79.88 5,541.43 3/20/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,541.23 4/21/2000 81.15 80.13 5,541.23 4/21/2000 81.40 80.38 5,541.23 4/21/2000 81.40 80.38 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/1/2000 80.00 79.88 5,541.63 5/1/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.65 6/16/2000 80.68 79.66 5,541.85 7/6/2000 80.48 79.46 5,541.91 7/1/3/2000	5,540.98				1/17/2000	81.35	80.33	
5,540.93 2/7/2000 81.40 80.38 5,541.23 2/14/2000 81.10 80.08 5,541.23 2/23/2000 81.10 80.08 5,541.33 3/1/2000 81.00 79.98 5,541.43 3/8/2000 80.90 79.88 5,541.73 3/15/2000 80.60 79.58 5,541.43 3/20/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,541.23 4/21/2000 81.10 80.08 5,541.23 4/21/2000 81.10 80.08 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/1/2000 81.00 79.98 5,541.63 5/11/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.65 6/16/2000 80.68 79.66 5,541.85 7/6/2000 80.48 79.46 5,542.17 <t< td=""><td>5,541.03</td><td></td><td></td><td></td><td>1/24/2000</td><td>81.30</td><td>80.28</td><td></td></t<>	5,541.03				1/24/2000	81.30	80.28	
5,541.23 2/14/2000 81.10 80.08 5,541.33 3/1/2000 81.00 79.98 5,541.43 3/8/2000 80.90 79.88 5,541.73 3/15/2000 80.60 79.58 5,541.43 3/20/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.33 5/1/2000 81.00 79.98 5,541.33 5/11/2000 80.90 79.88 5,541.63 5/11/2000 80.90 79.88 5,541.63 5/15/2000 80.90 79.88 5,541.63 5/25/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.68 79.66 5,541.63 6/9/2000 80.68 79.66 5,541.91 7/18/2000 80.48 79.46 5,542.17 7/27/2000	5,541.03				2/1/2000	81.30	80.28	
5,541.23 2/23/2000 81.10 80.08 5,541.33 3/1/2000 81.00 79.98 5,541.43 3/8/2000 80.90 79.88 5,541.73 3/15/2000 80.60 79.58 5,541.43 3/20/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/11/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.68 79.66 5,541.85 <t< td=""><td>5,540.93</td><td></td><td></td><td></td><td>2/7/2000</td><td>81.40</td><td>80.38</td><td></td></t<>	5,540.93				2/7/2000	81.40	80.38	
5,541.33 3/1/2000 81.00 79.98 5,541.43 3/8/2000 80.90 79.88 5,541.73 3/15/2000 80.60 79.58 5,541.43 3/20/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/11/2000 81.00 79.98 5,541.63 5/15/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.65 6/16/2000 80.68 79.66 5,541.65 6/16/2000 80.68 79.66 5,541.91 7/13/2000 80.48 79.46 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/12/7000 80.16 79.14 5,542.21 8/9/2000	5,541.23				2/14/2000	81.10	80.08	
5,541.43 3/8/2000 80.90 79.88 5,541.73 3/15/2000 80.60 79.58 5,541.43 3/20/2000 80.90 79.88 5,541.43 3/29/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.33 5/1/2000 81.00 79.88 5,541.63 5/11/2000 81.00 79.98 5,541.63 5/15/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,542.17 7/13/2000	5,541.23				2/23/2000	81.10	80.08	
5,541.73 3/15/2000 80.60 79.58 5,541.43 3/20/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/11/2000 81.00 79.98 5,541.63 5/15/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.69 7/13/2000 80.48 79.66 5,541.79 7/13/2000 80.48 79.46 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.93 9/1/2000	5,541.33				3/1/2000	81.00	79.98	
5,541.43 3/20/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.43 4/28/2000 80.90 79.88 5,541.33 5/11/2000 81.00 79.98 5,541.63 5/11/2000 80.70 79.68 5,541.63 5/15/2000 81.00 79.98 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 79.66 79.66 5,541.85 7/6/2000 80.48 79.46 5,541.81 7/13/2000 80.48 79.46 5,542.17 7/18/2000 80.42 79.40 5,542.31 8/2/2000 80.02	5,541.43				3/8/2000	80.90	79.88	
5,541.43 3/29/2000 80.90 79.88 5,541.18 4/4/2000 81.15 80.13 5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.43 4/28/2000 80.90 79.88 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/15/2000 81.00 79.98 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/16/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 7/6/2000 80.48 79.46 5,541.85 7/6/2000 80.48 79.46 5,541.91 7/13/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 79.90 78.88 5,542.41 8/15/2000	5,541.73				3/15/2000	80.60	79.58	
5,541.18 4/4/2000 81.15 80.13 5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.43 4/28/2000 80.90 79.88 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/11/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.69 7/13/2000 80.68 79.66 5,541.85 7/6/2000 80.48 79.46 5,541.91 7/13/2000 80.48 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.93 9/1/2000	5,541.43				3/20/2000	80.90	79.88	
5,540.93 4/13/2000 81.40 80.38 5,541.23 4/21/2000 81.10 80.08 5,541.43 4/28/2000 80.90 79.88 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/11/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.44 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.93 9/1/2000 79.40 78.23 5,542.87 9/8/2000 79.40 78.24 5,543.25 9/20/2000	5,541.43				3/29/2000	80.90	79.88	
5,541.23 4/21/2000 81.10 80.08 5,541.43 4/28/2000 80.90 79.88 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/11/2000 80.70 79.68 5,541.63 5/15/2000 81.00 79.98 5,541.63 5/25/2000 80.70 79.68 5,541.65 6/9/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.85 7/13/2000 80.44 79.46 5,542.17 7/18/2000 80.54 79.92 5,542.41 8/15/2000	5,541.18				4/4/2000	81.15	80.13	
5,541.43 4/28/2000 80.90 79.88 5,541.33 5/1/2000 81.00 79.98 5,541.63 5/11/2000 80.70 79.68 5,541.33 5/15/2000 81.00 79.98 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.65 6/16/2000 80.68 79.66 5,541.85 7/6/2000 80.70 79.68 5,541.79 7/13/2000 80.48 79.46 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.25 9/20/2000 79.08 78.00 5,543.34 10/5/2000	5,540.93				4/13/2000	81.40	80.38	
5,541.33 5/1/2000 81.00 79.98 5,541.63 5/11/2000 80.70 79.68 5,541.33 5/15/2000 81.00 79.98 5,541.63 5/25/2000 80.70 79.68 5,541.65 6/9/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.54 79.52 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.87 9/8/2000 79.40 78.38 5,542.87 9/8/2000 79.40 78.34 5,543.09 9/13/2000 79.24 78.22 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000	5,541.23				4/21/2000	81.10	80.08	
5,541.63 5/11/2000 80.70 79.68 5,541.33 5/15/2000 81.00 79.98 5,541.63 5/25/2000 80.70 79.68 5,541.65 6/9/2000 80.70 79.68 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.54 79.52 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.87 9/8/2000 79.40 78.38 5,543.09 9/13/2000 79.24 78.22 5,543.44 10/5/2000 78.89 77.87 5,544.49 11/9/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.43				4/28/2000	80.90	79.88	
5,541.33 5/15/2000 81.00 79.98 5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.65 6/16/2000 80.68 79.66 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.54 79.52 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000	5,541.33				5/1/2000	81.00	79.98	
5,541.63 5/25/2000 80.70 79.68 5,541.63 6/9/2000 80.70 79.68 5,541.65 6/16/2000 80.68 79.66 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.54 79.52 5,541.91 7/27/2000 80.16 79.14 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001	5,541.63				5/11/2000	80.70	79.68	
5,541.63 6/9/2000 80.70 79.68 5,541.65 6/16/2000 80.68 79.66 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.54 79.52 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.33				5/15/2000	81.00	79.98	
5,541.65 6/16/2000 80.68 79.66 5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.54 79.52 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.63				5/25/2000	80.70	79.68	
5,541.63 6/26/2000 80.70 79.68 5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.54 79.52 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.63				6/9/2000	80.70	79.68	
5,541.85 7/6/2000 80.48 79.46 5,541.79 7/13/2000 80.54 79.52 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/11/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.65				6/16/2000	80.68	79.66	
5,541.79 7/13/2000 80.54 79.52 5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.63				6/26/2000	80.70	79.68	
5,541.91 7/18/2000 80.42 79.40 5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.85				7/6/2000	80.48	79.46	
5,542.17 7/27/2000 80.16 79.14 5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.79				7/13/2000	80.54	79.52	,
5,542.31 8/2/2000 80.02 79.00 5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,541.91				7/18/2000	80.42	79.40	
5,542.43 8/9/2000 79.90 78.88 5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,542.17				7/27/2000	80.16		
5,542.41 8/15/2000 79.92 78.90 5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,542.31				8/2/2000	80.02	79.00	
5,542.08 8/31/2000 80.25 79.23 5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,542.43				8/9/2000	79.90	78.88	
5,542.93 9/1/2000 79.40 78.38 5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,542.41				8/15/2000	79.92	78.90	
5,542.87 9/8/2000 79.46 78.44 5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,542.08				8/31/2000	80.25	79.23	
5,543.09 9/13/2000 79.24 78.22 5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,542.93				9/1/2000	79.40	78.38	
5,543.25 9/20/2000 79.08 78.06 5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17					9/8/2000	79.46	78.44	
5,543.44 10/5/2000 78.89 77.87 5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,543.09				9/13/2000	79.24	78.22	
5,544.08 11/9/2000 78.25 77.23 5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,543.25				9/20/2000	79.08	78.06	
5,544.49 12/6/2000 77.84 76.82 5,546.14 1/14/2001 76.19 75.17	5,543.44				10/5/2000	78.89	77.87	
5,546.14 1/14/2001 76.19 75.17	5,544.08				11/9/2000	78.25	77.23	
	5,544.49				12/6/2000	77.84	76.82	
5,547.44 2/2/2001 74.89 73.87					1/14/2001	76.19	75.17	
	5,547.44				2/2/2001	74.89	73.87	

5,548.71	3/29/2001	73.62	72.60
5,549.20	4/30/2001	73.13	72.11
5,549.64	5/31/2001	72.69	71.67
5,549.94	6/22/2001	72.39	71.37
5,550.25	7/10/2001	72.08	71.06
5,550.93	8/10/2001	71.40	70.38
5,551.34	9/19/2001	70.99	69.97
5,551.59	10/2/2001	70.74	69.72
5,549.64	5/31/2001	72.69	71.67
5,549.94	6/21/2001	72.39	71.37
5,550.25	7/10/2001	72.08	71.06
5,550.93	8/20/2001	71.40	70.38
5,551.34	9/19/2001	70.99	69.97
5,551.59	10/2/2001	70.74	69.72
5,551.87	11/8/2001	70.46	69.44
5,552.40	12/3/2001	69.93	68.91
5,552.62	1/3/2002	69.71	68.69
5,553.12	2/6/2002	69.21	68.19
5,553.75	3/26/2002	68.58	67.56
5,553.97	4/9/2002	68.36	67.34
5,554.56	5/23/2002	67.77	66.75
5,554.54	6/5/2002	67.79	66.77
5,554.83	7/8/2002	67.50	66.48
5,555.29	8/23/2002	67.04	66.02
5,555.54	9/11/2002	66.79	65.77
5,555.94	10/23/2002	66.39	65.37
5,556.02	11/22/2002	66.31	65.29
5,556.23	12/3/2002	66.10	65.08
5,556.49	1/9/2003	65.84	64.82
5,556.67	2/12/2003	65.66	64.64
5,557.15	3/26/2003	65.18	64.16
5,557.23	4/2/2003	65.10	64.08
5,556.07	5/1/2003	66.26	65.24
5,554.28	6/9/2003	68.05	67.03
5,553.84	7/7/2003	68.49	67.47
5,553.39	8/4/2003	68.94	67.92
5,553.06	9/11/2003	69.27	68.25
5,553.33	10/2/2003	69.00	67.98
5,553.25	11/7/2003	69.08	68.06
5,553.82	12/3/2003	68.51	67.49
5,555.61	1/15/2004	66.72	65.70
5,556.32	2/10/2004	66.01	64.99
5,557.38	3/28/2004	64.95	63.93
5,557.79	4/12/2004	64.54	63.52
5,558.35	5/13/2004	63.98	62.96
5,560.03	6/18/2004	62.30	61.28
5,560.36	7/28/2004	61.97	60.95
5,557.96	8/30/2004	64.37	
5,557.24	9/16/2004	65.09	63.35
5,556.28	10/11/2004	66.05	64.07
5,556.17	11/16/2004		65.03
5,556.21		66.16	65.14
-,0001	12/22/2004	66.12	65.10

5,555.82		1/18/2005	66.51	65.49
5,555.96		2/28/2005	66.37	65.35
5,556.01		3/15/2005	66.32	65.30
5,556.05		4/26/2005	66.28	65.26
5,556.00		5/24/2005	66.33	65.31
5,555.97		6/30/2005	66.36	65.34
5,555.90		7/29/05	66.43	65.41
5,556.22		9/12/05	66.11	65.09
5,556.25		12/7/2005	66.08	65.06
5,556.71		3/8/2006	65.62	64.60
5,556.98	*	6/14/2006	65.35	64.33
5,560.95		7/18/2006	61.38	60.36
5,557.07		11/7/2006	65.26	64.24
5,558.10		2/27/2007	64.23	63.21

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,631.21	5,632.23	1.02		-		141
5,565.78				11/29/1999	66.45	65.43	_
5,566.93				1/2/2000	65.30	64.28	
5,567.03				1/10/2000	65.20	64.18	
5,566.83				1/17/2000	65.40	64.38	
5,567.13				1/24/2000	65.10	64.08	
5,567.33				2/1/2000	64.90	63.88	
5,567.13				2/7/2000	65.10	64.08	
5,567.43				2/14/2000	64.80	63.78	
5,567.63				2/23/2000	64.60	63.58	
5,567.73				3/1/2000	64.50	63.48	
5,567.83				3/8/2000	64.40	63.38	
5,567.70				3/15/2000	64.53	63.51	
5,568.03				3/20/2000	64.20	63.18	
5,567.93				3/29/2000	64.30	63.28	
5,567.63				4/4/2000	64.60	63.58	
5,567.83				4/13/2000	64.40	63.38	
5,568.03				4/21/2000	64.20	63.18	
5,568.23				4/28/2000	64.00	62.98	
5,568.13				5/1/2000	64.10	63.08	
5,568.53				5/11/2000	63.70	62.68	
5,568.23				5/15/2000	64.00	62.98	
5,568.53				5/25/2000	63.70	62.68	
5,568.61				6/9/2000	63.62	62.60	
5,568.69				6/16/2000	63.54	62.52	
5,568.45				6/26/2000	63.78	62.76	
5,568.61				7/6/2000	63.62	62.60	
5,568.61				7/6/2000	63.62	62.60	
5,568.49				7/13/2000	63.74	62.72	-
5,568.55				7/18/2000	63.68	62.66	
5,568.65				7/27/2000	63.58	62.56	
5,568.73				8/2/2000	63.50	62.48	
5,568.77				8/9/2000	63.46	62.44	
5,568.76				8/16/2000	63.47	62.45	
5,568.95				8/31/2000	63.28	62.26	
5,568.49				9/8/2000	63.74	62.72	
5,568.67				9/13/2000	63.56	62.54	
5,568.96				9/20/2000	63.27	62.25	
5,568.93				10/5/2000	63.3	62.28	
5,569.34				11/9/2000	62.89	61.87	
5,568.79				12/6/2000	63.44	62.42	
5,569.11				1/3/2001	63.12	62.10	
5,569.75				2/9/2001	62.48	61.46	
5,570.34				3/28/2001	61.89	60.87	

5,570.61	4/30/2001	61.62	60.60
5,570.70	5/31/2001	61.53	60.51
5,570.88	6/21/2001	61.35	60.33
5,571.02	7/10/2001	61.21	60.19
5,571.70	8/20/2001	60.53	59.51
5,572.12	9/19/2001	60.11	59.09
5,572.08	10/2/2001	60.15	59.13
5,570.70	5/31/2001	61.53	60.51
5,570.88	6/21/2001	61.35	60.33
5,571.02	7/10/2001	61.21	60.19
5,571.70	8/20/2001	60.53	59.51
5,572.12	9/19/2001	60.11	59.09
5,572.08	10/2/2001	60.15	59.13
5,572.78	11/8/2001	59.45	58.43
5,573.27	12/3/2001	58.96	57.94
5,573.47	1/3/2002	58.76	57.74
5,573.93	2/6/2002	58.30	57.28
5,574.75	3/26/2002	57.48	56.46
5,574.26	4/9/2002	57.97	56.95
5,575.39	5/23/2002	56.84	55.82
5,574.84	6/5/2002	57.39	56.37
5,575.33	7/8/2002	56.90	55.88
5,575.79	8/23/2002	56.44	55.42
5,576.08	9/11/2002	56.15	55.13
5,576.30	10/23/2002	55.93	54.91
5,576.35	11/22/2002	55.88	54.86
5,576.54	12/3/2002	55.69	54.67
5,576.96	1/9/2003	55.27	54.25
5,577.11	2/12/2003	55.12	54.10
5,577.61	3/26/2003	54.62	53.60
5,572.80	4/2/2003	59.43	58.41
5,577.89	5/1/2003	54.34	53.32
5,577.91	6/9/2003	54.32	53.30
5,577.53	7/7/2003	54.70	53.68
5,577.50	8/4/2003	54.73	53.71
5,577.71	9/11/2003	54.52	53.50
5,577.31	10/2/2003	54.92	53.90
5,577.33	11/7/2003	54.90	53.88
5,577.34	12/3/2003	54.89	53.87
5,578.24	1/15/2004	53.99	52.97
5,578.38	2/10/2004	53.85	52.83
5,578.69	3/28/2004	53.54	52.52
5,579.15	4/12/2004	53.08	52.06
5,579.47	5/13/2004	52.76	51.74
5,579.53	6/18/2004	52.70	51.68
5,580.17	7/28/2004	52.06	51.04
5,580.20	8/30/2004	52.03	51.01
5,580.26	9/16/2004	51.97	50.95
5,580.12	10/11/2004	52.11	51.09
5,579.93	11/16/2004	52.30	51.28
5,580.07	12/22/2004	52.16	51.14
5,579.80	1/18/2005	52.43	51.41

5,580.35
5,580.57
5,580.86
5,581.20
5,581.51
5,581.55
5,581.68
5,581.83
5,564.92
5,582.73
5,582.33
5,582.75
5583.35

2/28/2005	51.88	50.86
3/15/2005	51.66	50.64
4/26/2005	51.37	50.35
5/24/2005	51.03	50.01
6/30/2005	50.72	49.70
07/29/05	50.68	49.66
09/12/05	50.55	49.53
12/7/2005	50.4	49.38
3/8/2006	67.31	66.29
6/13/2006	49.50	48.48
7/18/2006	49.90	48.88
11/7/2006	49.48	48.46
2/27/2007	48.88	47.86

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184			· · · · · · · · · · · · · · · · · · ·	114.5
5,512.145	•			5/25/2000	101.34	100.16	
5,518.985				6/9/2000	94.50	93.32	
5,512.145				6/16/2000	101.34	100.16	
5,517.465				6/26/2000	96.02	94.84	
5,520.145				7/6/2000	93.34	92.16	
5,521.435				7/13/2000	92.05	90.87	
5,522.005				7/18/2000	91.48	90.30	
5,522.945				7/27/2000	90.54	89.36	
5,523.485				8/2/2000	90.00	88.82	
5,523.845				8/9/2000	89.64	88.46	
5,523.885				8/15/2000	89.60	88.42	
5,524.555				9/1/2000	88.93	87.75	
5,513.235				9/8/2000	100.25	99.07	
5,516.665				9/13/2000	96.82	95.64	
5,519.085				9/20/2000	94.40	93.22	
5,522.165				10/5/2000	91.32	90.14	
5,524.665				11/9/2000	88.82	87.64	
5,518.545				12/6/2000	94.94	93.76	
5,527.695				1/3/2001	85.79	84.61	
5,529.085				2/9/2001	84.40	83.22	
5,529.535				3/27/2001	83.95	82.77	
5,530.235				4/30/2001	83.25	82.07	
5,530.265				5/31/2001	83.22	82.04	
5,534.405				6/22/2001	79.08	77.90	
5,533.145				7/10/2001	80.34	79.16	
5,534.035				8/20/2001	79.45	78.27	
5,534.465				9/19/2001	79.02	77.84	
5,533.285				10/2/2001	80.20	79.02	
5,530.265				5/31/2001	83.22	82.04	
5,534.405				6/21/2001	79.08	77.90	
5,533.145				7/10/2001	80.34	79.16	
5,534.035				8/20/2001	79.45	78.27	
5,534.465				9/19/2001	79.02	77.84	
5,533.285				10/2/2001	80.20	79.02	
5,533.865				11/8/2001	79.62	78.44	
5,534.275				12/3/2001	79.21	78.03	
5,534.715		•		1/3/2002	78.77	77.59	
5,535.435				2/6/2002	78.05	76.87	
5,536.445				3/26/2002	77.04	75.86	
5,536.405				4/9/2002	77.08	75.90	
5,537.335				5/23/2002	76.15	74.97	
5,537.325				6/5/2002	76.16	74.98	
5,537.975				7/8/2002	75.51	74.33	

5,538.825	8/23/2002	74.66	73.48
5,539.275	9/11/2002	74.21	73.03
5,539.765	10/23/2002	73.72	72.54
5,540.205	11/22/2002	73.28	72.10
5,540.295	12/3/2002	73.19	72.01
5,540.795	1/9/2003	72.69	71.51
5,540.985	2/12/2003	72.50	71.32
5,541.675	3/26/2003	71.81	70.63
5,541.765	4/2/2003	71.72	70.54
5,541.885	5/1/2003	71.60	70.42
5,542.025	6/9/2003	71.46	70.28
5,541.925	7/7/2003	71.56	70.38
5,541.885	8/4/2003	71.60	70.42
5,541.825	9/11/2003	71.66	70.48
5,541.885	10/2/2003	71.60	70.42
5,541.995	11/7/2003	71.49	70.31
5,542.005	12/3/2003	71.48	70.30
5,542.555	1/15/2004	70.93	69.75
5,542.705	2/10/2004	70.78	69.60
5,543.225	3/28/2004	70.26	69.08
5,543.555	4/12/2004	69.93	68.75
5,543.865	5/13/2004	69.62	68.44
5,543.915	6/18/2004	69.57	68.39
5,544.655	7/28/2004	68.83	67.65
5,544.795	8/30/2004	68.69	67.51
5,544.845	9/16/2004	68.64	67.46
5,544.705	10/11/2004	68.78	67.60
5,544.525	11/16/2004	68.96	67.78
5,544.625	12/22/2004	68.86	67.68
5,544.305	1/18/2005	69.18	68.00
5,544.585	2/28/2005	68.90	67.72
5,544.685	3/15/2005	68.80	67.62
5,544.675	4/26/2005	68.81	67.63
5,544.785	5/24/2005	68.70	67.52
5,544.795	6/30/2005	68.69	67.51
5,544.775	7/29/2005	68.71	67.53
5,545.005	9/12/2005	68.48	67.30
5,545.225	12/7/2005	68.26	67.08
5,545.735	3/8/2006	67.75	66.57
5,545.785	6/14/2006	67.70	66.52
5,545.855	7/18/2006	67.63	66.45
5,545.805	11/7/2006	67.68	66.50
5546.675	2/27/2007	66.81	65.63

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,579.30				1/2/00	61.40	59.45	
5,579.60				1/10/00	61.10	59.15	
5,579.35				1/17/00	61.35	59.40	
5,579.60				1/24/00	61.10	59.15	
5,579.50				2/1/00	61.20	59.25	
5,579.50				2/7/00	61.20	59.25	
5,579.90				2/14/00	60.80	58.85	
5,579.90				2/23/00	60.80	58.85	
5,580.20				3/1/00	60.50	58.55	
5,580.00				3/8/00	60.70	58.75	
5,580.04				3/15/00	60.66	58.71	
5,580.70				3/20/00	60.00	58.05	
5,580.30				3/29/00	60.40	58.45	
5,580.00				4/4/00	60.70	58.75	
5,580.20				4/13/00	60.50	58.55	
5,580.40				4/21/00	60.30	58.35	
5,580.50				4/28/00	60.20	58.25	
5,580.50				5/1/00	60.20	58.25	
5,580.90				5/11/00	59.80	57.85	
5,580.50				5/15/00	60.20	58.25	
5,580.75				5/25/00	59.95	58.00	
5,580.80				6/9/00	59.90	57.95	
5,580.92				6/16/00	59.78	57.83	
5,580.80				6/26/00	59.90	57.95	
5,580.90				7/6/00	59.80	57.85	
5,581.05		•		7/13/00	59.65	57.70	
5,580.90				7/18/00	59.80	57.85	
5,581.05				7/27/00	59.65	57.70	
5,581.06				8/2/00	59.64	57.69	
5,581.08				8/9/00	59.62	57.67	
5,581.07				8/16/00	59.63	57.68	
5,581.25				8/31/00	59.45	57.50	
5,581.32				9/8/00	59.38	57.43	
5,581.34				9/13/00	59.36	57.41	
5,581.41				9/20/00	59.29	57.34	
5,581.37				10/5/00	59.33	57.38	
5,581.66				11/9/00	59.04	57.09	
5,581.63				12/6/00	59.07	57.12	
5,581.92				1/3/01	58.78	56.83	
5,582.20				2/9/01	58.50	56.55	
5,582.54				3/28/01	58.16	56.21	
5,582.72				4/30/01	57.98	56.03	
5,582.72				5/31/01	57.98	56.03	

5,582.81	6/22/01	57.89	55.94
5,582.92	7/10/01	57.78	55.83
5,583.17	8/20/01	57.53	55.58
5,583.28	9/19/01	57.42	55.47
5,583.36	10/2/01	57.34	55.39
5,582.72	5/31/01	57.98	56.03
5,582.81	6/21/01	57.89	55.94
5,582.92	7/10/01	57.78	55.83
5,583.17	8/20/01	57.53	55.58
5,583.28	9/19/01	57.42	55.47
5,583.36	10/2/01	57.34	55.39
5,583.49	11/8/01	57.21	55.26
5,583.84	12/3/01	56.86	54.91
5,583.79	1/3/02	56.91	54.96
5,583.96	2/6/02	56.74	54.79
5,584.39	3/26/02	56.31	54.36
5,584.12	4/9/02	56.58	54.63
5,584.55	5/23/02	56.15	54.20
5,584.42	6/5/02	56.28	54.33
5,583.65	7/8/02	57.05	55.10
5,584.90	8/23/02	55.80	53.85
5,585.02	9/11/02	55.68	53.73
5,585.20	10/23/02	55.50	53.55
5,585.15	11/22/02	55.55	53.60
5,585.42	12/3/02	55.28	53.33
5,585.65	1/9/03	55.05	53.10
5,585.65	2/12/03	55.05	53.10
5,585.92	3/26/03	54.78	52.83
5,586.22	4/2/03	54.48	52.53
5,586.01	5/1/03	54.69	52.74
5,584.81	6/9/03	55.89	53.94
5,584.34	7/7/03	56.36	54.41
5,584.40	8/4/03	56.30	54.35
5,583.88	9/11/03	56.82	54.87
5,583.57	10/2/03	57.13	55.18
5,583.39	11/7/03	57.31	55.36
5,583.97	12/3/03	56.73	54.78
5,585.28	1/15/04	55.42	53.47
5,585.50	2/10/04	55.20	53.25
5,585.87	3/28/04	54.83	52.88
5,586.20	4/12/04	54.50	52.55
5,586.45	5/13/04	54.25	52.30
5,586.50	6/18/04	54.20	52.25
5,587.13	7/28/04	53.57	51.62
5,586.22	8/30/04	54.48	52.53
5,585.69	9/16/04	55.01	53.06
5,585.17	10/11/04	55.53	53.58
5,584.64	10/11/04	56.06	54.11
5,584.77	12/22/04		
5,584.65		55.93	53.98
5,584.98	1/18/05	56.05	54.10
5,585.15	2/28/05	55.72	53.77
ر1،ر0ر,ر	3/15/05	55.55	53.60

4/26/05	54.45	52.50
5/24/05	53.91	51.96
6/30/05	54.18	52.23
7/29/05	54.67	52.72
9/12/05	54.65	52.70
12/7/05	54.90	52.95
3/8/06	53.64	51.69
6/13/06	54.80	52.85
7/18/06	55.38	53.43
11/7/06	55.35	53.40
2/27/07	54.89	52.94
	5/24/05 6/30/05 7/29/05 9/12/05 12/7/05 3/8/06 6/13/06 7/18/06 11/7/06	5/24/05 53.91 6/30/05 54.18 7/29/05 54.67 9/12/05 54.65 12/7/05 54.90 3/8/06 53.64 6/13/06 54.80 7/18/06 55.38 11/7/06 55.35

5,524.36	8/23/02	84.42	82.97
5,524.49	9/11/02	84.29	82.84
5,524.71	10/23/02	84.07	82.62
5,524.60	11/22/02	84.18	82.73
5,524.94	12/3/02	83.84	82.39
5,525.10	1/9/03	83.68	82.23
5,525.15	2/12/03	83.63	82.18
5,525.35	3/26/03	83.43	81.98
5,525.68	4/2/03	83.10	81.65
5,525.74	5/1/03	83.04	81.59
5,525.98	6/9/03	82.80	81.35
5,526.04	7/7/03	82.74	81.29
5,526.07	8/4/03	82.71	81.26
5,526.42	9/11/03	82.36	80.91
5,526.30	10/2/03	82.48	81.03
5,526.41	11/7/03	82.37	80.92
5,526.46	12/3/03	82.32	80.87
5,526.83	1/15/04	81.95	80.50
5,526.81	2/10/04	81.97	80.52
5,527.14	3/28/04	81.64	80.19
5,527.39	4/12/04	81.39	79.94
5,527.64	5/13/04	81.14	79.69
5,527.70	6/18/04	81.08	79.63
5,528.16	7/28/04	80.62	79.17
5,528.30	8/30/04	80.48	79.03
5,528.52	9/16/04	80.26	78.81
5,528.71	10/11/04	80.07	78.62
5,528.74	11/16/04	80.04	78.59
5,529.20	12/22/04	79.58	78.13
5,528.92	1/18/05	79.86	78.41
5,529.51	2/28/05	79.27	77.82
5,529.74	3/15/05	79.04	77.59
5,529.96	4/26/05	78.82	77.37
5,530.15	5/24/05	78.63	77.18
5,530.35	6/30/05	78.43	76.98
5,530.47	7/29/05	78.31	76.86
5,530.95	9/12/05	77.83	76.38
5,531.50	12/7/05	77.28	75.83
5,532.43	3/8/06	76.35	74.90
5,533.49	6/13/06	75.29	73.84
5,532.58	7/18/06	76.20	74.75
5,532.88	11/7/06	75.90	74.45
5534.09	2/27/07	74.69	73.24

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,552.37		,		11/29/1999	68.70	67.50	
5,553.57				1/2/2000	67.50	66.30	
5,553.87				1/10/2000	67.20	66.00	
5,553.72				1/17/2000	67.35	66.15	
5,553.97				1/24/2000	67.10	65.90	
5,553.87				2/1/2000	67.20	66.00	
5,553.87				2/7/2000	67.20	66.00	
5,554.17				2/14/2000	66.90	65.70	
5,554.27				2/23/2000	66.80	65.60	
5,554.37				3/1/2000	66.70	65.50	
5,554.37				3/8/2000	66.70	65.50	
5,554.27				3/15/2000	66.80	65.60	
5,554.77				3/20/2000	66.30	65.10	
5,554.57				3/29/2000	66.50	65.30	
5,554.27				4/4/2000	66.80	65.60	
5,554.57				4/13/2000	66.50	65.30	
5,554.77				4/21/2000	66.30	65.10	
5,554.87				4/28/2000	66.20	65.00	
5,554.87				5/1/2000	66.20	65.00	
5,555.27				5/11/2000	65.80	64.60	
5,554.97				5/15/2000	66.10	64.90	
5,555.27				5/25/2000	65.80	64.60	
5,555.33				6/9/2000	65.74	64.54	
5,555.45				6/16/2000	65.62	64.42	
5,555.22				6/26/2000	65.85	64.65	
5,555.45				7/6/2000	65.62	64.42	
5,555.40				7/13/2000	65.67	64.47	
5,555.45				7/18/2000	65.62	64.42	-
5,555.59				7/27/2000	65.48	64.28	
5,555.65				8/2/2000	65.42	64.22	
5,555.70				8/9/2000	65.37	64.17	
5,555.74				8/16/2000	65.33	64.13	
5,555.96				8/31/2000	65.11	63.91	
5,555.87				9/8/2000	65.20	64.00	
5,555.95				9/13/2000	65.12	63.92	
5,556.05				9/20/2000	65.02	63.82	
5,556.06				10/5/2000	65.01	63.81	
5,556.17				10/12/2000	64.90	63.70	
5,556.20				10/19/2000	64.87	63.67	
5,556.22				10/23/2000	64.85	63.65	
5,556.36				11/9/2000	64.71	63.51	
5,556.42				11/14/2000	64.65	63.45	
5,556.45				11/30/2000	64.62	63.42	

_		VV 1111 U	e Mesa M	III - Well T	· - •		
		Magazzeina			Total or		
Water	Land	Measuring Point			Measured	Total	Total
Elevation	Surface		T 41.00	.	Depth to	Depth to	Depth Of
(WL)	(LSD)		Length Of	Date Of	Water	Water	Well
(WL)	<u> </u>	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
F 556 15	5,619.87	5,621.07	1.20				119.8
5.556.15				12/6/2000	64.92	63.72	
.556.89				1/14/2001	64.18	62.98	
5,557.07				2/9/2001	64.00	62.80	
5,557.62				3/29/2001	63.45	62.25	
557.51				4/30/2001	63.56	62.36	
5 ,557.77				5/31/2001	63.30	62.10	
5,557.84				6/21/2001	63.23	62.03	
557.98				7/10/2001	63.09	61.89	
558.33				8/20/2001	62.74	61.54	
5,558.57				9/19/2001	62.50	61.30	
558.53				10/2/2001	62.54	61.34	
558.62				11/8/2001	62.45	61.25	
5,559.03				12/3/2001	62.04	60.84	
5.559.08				1/3/2002	61.99	60.79	
559.32				2/6/2002	61.75	60.55	
5,559.63				3/26/2002	61.44	60.24	
5,559.55				4/9/2002	61.52	60.32	
560.06				5/23/2002	61.01	59.81	
559.91				6/5/2002	61.16	59.96	
5,560.09				7/8/2002	60.98	59.78	
560.01				8/23/2002	61.06	59.86	
560.23				9/11/2002	60.84	59.64	
5,560.43				10/23/2002	60.64	59.44	
5-560.39				11/22/2002	60.68	59.48	
560.61				12/3/2002	60.46	59.26	
5,560.89				1/9/2003	60.18	58.98	
5,560.94				2/12/2003	60.13	58.93	
: 61.28				3/26/2003	59.79	58.59	
5,561.35				4/2/2003	59.72	58.52	
5,546.20				5/1/2003	74.87	73.67	
39.47				6/9/2003	81.60	80.40	
41.87				7/7/2003	79.20	78.00	
5,542.12				8/4/2003	78.95	77.75	
5 41.91				9/11/2003	79.16	77.96	
5 44.62				10/2/2003	76.45	75.25	
5,542.67				11/7/2003	78.40	77.20	
5.549.96				12/3/2003	71.11	69.91	
5 57.17				1/15/2004	63.90	62.70	
5,558.65				2/10/2004	62.42	61.22	
5,559.90				3/28/2004	61.17	59.97	
5 60.36				4/12/2004	60.71	59.51	
<i>5</i> ,560.87				5/13/2004	60.20	59.00	
5,560.95				6/18/2004	60.12	58.92	
				•		50.72	

_		* * * * * * * * * * * * * * * * * * * *	C IVACUA IVA	III - VVCII I			
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
	5,619.87	5,621.07	1.20			(8111122)	119.8
5,561.64	· · · · · · · · · · · · · · · · · · ·			7/28/2004	59.43	58.23	117.0
543.00				8/30/2004	78.07	76.87	
5,541.91				9/16/2004	79.16	77.96	
<u>5,</u> 540.08				10/11/2004	80.99	79.79	
546.92				11/16/2004	74.15	72.95	
5,546.97				12/22/2004	74.10	72.90	
5,546.51				1/18/2005	74.56	73.36	
546.66				2/28/2005	74.41	73.21	
546.81				3/15/2005	74.26	73.06	
5,548.19				4/26/2005	72.88	71.68	
5 47.11				5/24/2005	73.96	72.76	
546.98				6/30/2005	74.09	72.89	
5, 546.92				7/29/2005	74.15	72.95	
<u>5</u> 547.26				9/12/2005	73.81	72.61	
547.26				12/7/2005	73.81	72.61	
5,548.86				3/8/2006	72.21	71.01	
<u>5,</u> 548.62				6/13/2006	72.45	71.25	
550.04				7/18/2006	71.03	69.83	
548.32				11/7/2006	72.75	71.55	
5,550.44				2/27/2007	70.63	69.43	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,618.21	1.41				126.00
5,543.21				11/29/1999	75.00	73.59	
5,543.01				1/2/2000	75.20	73.79	
5,543.31				1/10/2000	74.90	73.49	
5,543.11				1/17/2000	75.10	73.69	
5,543.41				1/24/2000	74.80	73.39	
5,543.31				2/1/2000	74.90	73.49	
5,543.31				2/7/2000	74.90	73.49	
5,543.71				2/14/2000	74.50	73.09	
5,543.76				2/23/2000	74.45	73.04	
5,543.86				3/1/2000	74.35	72.94	
5,543.86				3/8/2000	74.35	72.94	
5,543.91				3/15/2000	74.30	72.89	
5,544.31				3/20/2000	73.90	72.49	
5,544.21				3/29/2000	74.00	72.59	
5,544.01				4/4/2000	74.20	72.79	
5,544.21				4/13/2000	74.00	72.59	
5,544.41				4/21/2000	73.80	72.39	
5,544.51				4/28/2000	73.70	72.29	
5,544.51				5/1/2000	73.70	72.29	
5,544.81				5/11/2000	73.40	71.99	
5,544.51				5/15/2000	73.70	72.29	
5,544.71				5/25/2000	73.50	72.09	
5,544.71				6/9/2000	73.50	72.09	
5,544.81				6/16/2000	73.40	71.99	
5,544.68				6/26/2000	73.53	72.12	
5,544.76				7/6/2000	73.45	72.04	
5,544.77				7/13/2000	73.44	72.03	
5,544.76				7/18/2000	73.45	72.04	•
5,544.92				7/27/2000	73.29	71.88	
5,544.96				8/2/2000	73.25	71.84	
5,544.98				8/9/2000	73.23	71.82	
5,544.97				8/15/2000	73.24	71.83	
5,545.21				8/31/2000	73.00	71.59	
5,545.31				9/8/2000	72.90	71.49	
5,545.43				9/13/2000	72.78	71.37	
5,545.56				9/20/2000	72.65	71.24	
5,545.57				10/5/2000	72.64	71.23	
5,545.81				11/9/2000	72.40	70.99	
5,545.66				12/6/2000	72.55	71.14	
5,546.28				1/3/2001	71.93	70.52	
5,546.70				2/9/2001	71.51	70.10	
5,547.18				3/27/2001	71.03	69.62	
5,547.31				4/30/2001	70.90	69.49	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,618.21	1.41		· `	- 	126.00
5,547.49				5/31/2001	70.72	69.31	***
5,547.49				6/20/2001	70.72	69.31	
5,547.83				7/10/2001	70.38	68.97	
5,548.13				8/20/2001	70.08	68.67	
5,548.30				9/19/2001	69.91	68.50	
5,548.45				10/2/2001	69.76	68.35	
5,547.49				5/31/2001	70.72	69.31	
5,547.54				6/21/2001	70.67	69.26	
5,547.83				7/10/2001	70.38	68.97	
5,548.13				8/20/2001	70.08	68.67	
5,548.30				9/19/2001	69.91	68.50	
5,548.45				10/2/2001	69.76	68.35	
5,548.62				11/8/2001	69.59	68.18	
5,549.03				12/3/2001	69.18	67.77	
5,548.97				1/3/2002	69.24	67.83	
5,549.19				2/6/2002	69.02	67.61	
5,549.66				3/26/2002	68.55	67.14	
5,549.64				4/9/2002	68.57	67.16	
5,550.01				5/23/2002	68.20	66.79	
5,549.97				6/5/2002	68.24	66.83	
5,550.13				7/8/2002	68.08	66.67	
5,550.30				8/23/2002	67.91	66.50	
5,550.50				9/11/2002	67.71	66.30	
5,550.90				10/23/2002	67.31	65.90	
5,550.83				11/22/2002	67.38	65.97	
5,551.04				12/3/2002	67.17	65.76	
5,551.24				1/9/2003	66.97	65.56	
5,551.23				2/12/2003	66.98	65.57	
5,551.52				3/26/2003	66.69	65.28	
5,551.64				4/2/2003	66.57	65.16	
5,549.02				5/1/2003	69.19	67.78	
5,544.74				6/9/2003	73.47	72.06	
5,543.78				7/7/2003	74.43	73.02	
5,543.39				8/4/2003	74.82	73.41	
5,543.05				9/11/2003	75.16	73.75	
5,543.19				10/2/2003	75.02	73.61	
5,543.21				11/7/2003	75.00	73.59	
5,543.40				12/3/2003	74.81	73.40	
5,548.10				1/15/2004	70.11	68.70	
5,549.50				2/10/2004	68.71	67.30	
5,550.87				3/28/2004	67.34	65.93	
5,551.33				4/12/2004	66.88	65.47	
5,551.87				5/13/2004	66.34	64.93	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,618.21	1.41				126.00
5,551.92				6/18/2004	66.29	64.88	
5,552.69				7/28/2004	65.52	64.11	
5,549.78				8/30/2004	68.43	67.02	
5,547.46				9/16/2004	70.75	69.34	
5,545.21				10/11/2004	73.00	71.59	
5,545.09				11/16/2004	73.12	71.71	
5,545.61				12/22/2004	72.60	71.19	
5,545.24				1/18/2005	72.97	71.56	
5,545.42				2/28/2005	72.79	71.38	
5,545.45				3/15/2005	72.76	71.35	
5,545.46				4/26/2005	72.75	71.34	
5,545.66				5/24/2005	72.55	71.14	
5,545.54				6/30/2005	72.67	71.26	
5,545.43				7/29/2005	72.78	71.37	
5,545.61				9/12/2005	72.60	71.19	
5,545.52				12/7/2005	72.69	71.28	
5,546.53				3/8/2006	71.68	70.27	
5,546.51				6/13/2006	71.70	70.29	
5,546.51				7/18/2006	71.70	70.29	
5,546.46				11/7/2006	71.75	70.34	
5,547.92				2/27/2007	70.29	68.88	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,577.09			· · · · · · · · · · · · · · · · · · ·	12/20/99	60.5	59.02	
5,577.09				1/2/00	60.5	59.02	
5,577.29				1/10/00	60.3	58.82	
5,577.09				1/17/00	60.5	59.02	
5,577.39				1/24/00	60.2	58.72	
5,577.29				2/1/00	60.3	58.82	
5,577.19				2/7/00	60.4	58.92	
5,577.69				2/14/00	59.9	58.42	
5,577.69				2/23/00	59.9	58.42	
5,577.79				3/1/00	59.8	58.32	
5,577.79				3/8/00	59.8	58.32	
5,577.89				3/15/00	59.7	58.22	
5,568.49				3/20/00	69.1	67.62	
5,578.14				3/29/00	59.45	57.97	
5,577.84				4/4/00	59.75	58.27	
5,578.04				4/13/00	59.55	58.07	
5,578.24				4/21/00	59.35	57.87	
5,578.39				4/28/00	59.2	57.72	
5,578.39				5/1/00	59.2	57.72	
5,578.79				5/11/00	58.8	57.32	
5,578.39				5/15/00	59.2	57.72	
5,578.79				5/25/00	58.8	57.32	
5,578.81				6/9/00	58.78	57.30	
5,578.89				6/16/00	58.7	57.22	
5,578.74				6/26/00	58.85	57.37	
5,578.86				7/6/00	58.73	57.25	
5,578.87				7/13/00	58.72	57.24	
5,578.84				7/18/00	58.75	57.27	
5,579.03				7/27/00	58.56	57.08	•
5,579.03				8/2/00	58.56	57.08	
5,579.05				8/9/00	58.54	57.06	
5,579.04				8/15/00	58.55	57.07	
5,579.25				8/31/00	58.34	56.86	
5,579.35				9/8/00	58.24	56.76	
5,579.40				9/13/00	58.19	56.71	
5,579.46				9/20/00	58.13	56.65	
5,579.44				10/5/00	58.15	56.67	
5,579.79				11/9/00	57.8	56.32	
5,579.73				12/6/00	57.86	56.38	
5,580.01				1/3/01	57.58	56.10	
5,580.30				2/9/01	57.29	55.81	
5,580.66				3/27/01	56.93	55.45	
5,580.75				4/30/01	56.84	55.36	
•					- · · - ·		

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,581.04				5/31/01	56.55	55.07	
5,581.12				6/21/01	56.47	54.99	
5,581.15				7/10/01	56.44	54.96	
5,581.51				8/20/01	56.08	54.60	
5,581.70				9/19/01	55.89	54.41	
5,581.61				10/2/01	55.98	54.50	
5,581.04				5/31/01	56.55	55.07	
5,581.12				6/21/01	56.47	54.99	
5,581.15				7/10/01	56.44	54.96	
5,581.51				8/20/01	56.08	54.60	
5,581.70				9/19/01	55.89	54.41	
5,581.61				10/2/01	55.98	54.50	
5,581.83				11/8/01	55.76	54.28	
5,582.17				12/3/01	55.42	53.94	
5,582.21				1/3/02	55.38	53.90	
5,582.57				2/6/02	55.02	53.54	
5,583.12				3/26/02	54.47	52.99	
5,582.77				4/9/02	54.82	53.34	
5,583.21				5/23/02	54.38	52.90	
5,582.94				6/5/02	54.65	53.17	
5,582.71				7/8/02	54.88	53.40	
5,583.67				8/23/02	53.92	52.44	
5,583.82				9/11/02	53.77	52.29	
5,584.01				10/23/02	53.58	52.10	
5,583.88				11/22/02	53.71	52.23	
5,583.81				12/3/02	53.78	52.30	
5,584.28				1/9/03	53.31	51.83	
5,584.41				2/12/03	53.18	51.70	
5,584.68				3/26/03	52.91	51.43	
5,584.49				4/2/03	53.10	51.62	
5,584.51				5/1/03	53.08	51.60	
5,583.59				6/9/03	54.00	52.52	
5,582.96				7/7/03	54.63	53.15	
5,582.98				8/4/03	54.61	53.13	
5,582.57				9/11/03	55.02	53.54	
5,582.25				10/2/03	55.34	53.86	
5,582.09				11/7/03	55.50	54.02	
5,582.48				12/3/03	55.11	53.63	
5,583.69				1/15/04	53.90	52.42	
5,583.89				2/10/04	53.70	52.22	
5,584.30				3/28/04	53.29	51.81	
5,584.59				4/12/04	53.00	51.52	
5,584.87				5/13/04	52.72	51.24	

		,,,,,,,	e meda m	III WOII I	117-2		
Water	Land	Measuring Point			Total or Measured Depth to	Total Depth to	Total
Elevation	Surface	Elevation	Longth Of	Data Of	-	-	
(WL)	(LSD)	(MP)	Length Of		Water	Water	Depth Of
(VL)	5,636.11		Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
7.504.06	3,030.11	5,637.59	1.48				121.33
5,584.96				6/18/04	52.63	51.15	
5,585.50				7/28/04	52.09	50.61	
5,584.81				8/30/04	52.78	51.30	
5,584.40				9/16/04	53.19	51.71	
5,583.91				10/11/04	53.68	52.20	
5,583.39				11/16/04	54.20	52.72	
5,583.54				12/22/04	54.05	52.57	
5,583.34				1/18/05	54.25	52.77	
5,583.66				2/28/05	53.93	52.45	
5,583.87				3/15/05	53.72	52.24	
5,584.74				4/26/05	52.85	51.37	
5,585.26				5/24/05	52.33	50.85	
5,585.06				6/30/05	52.53	51.05	
5,584.67				7/29/05	52.92	51.44	
5,584.75				9/12/05	52.84	51.36	
5,584.51				12/7/05	53.08	51.60	
5,585.74				3/8/06	51.85	50.37	
5,584.74				6/13/06	52.85	51.37	
5,584.26				7/18/06	53.33	51.85	
5,584.21				11/7/06	53.38	51.90	
5,584.67				2/27/07	52.92	51.44	
•				2,2,,0,	22.72	J1.TT	

		vv nite	iviesa ivii	u - wen 1 v			
					Total or	m	
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface		Length Of		Water	Water	Depth Of
(WL)	(LSD)	(MP)		Monitoring	(blw.MP)	(blw.LSD)	Well
	5,631.99	5,634.24	2.25				121.33
5,576.75				1/3/02	57.49	55.24	
5,576.92				2/6/02	57.32	55.07	
5,577.43				3/26/02	56.81	54.56	
5,577.22				4/9/02	57.02	54.77	
5,577.80				5/23/02	56.44	54.19	
5,577.47				6/5/02	56.77	54.52	
5,577.55				7/8/02	56.69	54.44	
5,578.10				8/23/02	56.14	53.89	
5,578.24				9/11/02	56.00	53.75	
5,578.49				10/23/02	55.75	53.50	
5,578.43				11/22/02	55.81	53.56	
5,578.43				12/3/02	55.81	53.56	
5,578.66				1/9/03	55.58	53.33	
5,578.66				2/12/03	55.58	53.33	
5,578.78				3/26/03	55.46	53.21	
5,578.90				4/2/03	55.34	53.09	
5,578.83				5/1/03	55.41	53.16	
5,578.05				6/9/03	56.19	53.94	
5,577.38				7/7/03	56.86	54.61	
5,577.15				8/4/03	57.09	54.84	
5,576.76				9/11/03	57.48	55.23	
5,576.36				10/2/03	57.88	55.63	
5,576.05				11/7/03	58.19	55.94	
5,576.20				12/3/03	58.04	55.79	
5,577.43				1/15/04	56.81	54.56	
5,577.81				2/10/04	56.43	54.18	
5,578.47				3/28/04	55.77	53.52	
5,578.69				4/12/04	55.55	53.30	
5,578.93				5/13/04	55.31	53.06	
5,578.99				6/18/04	55.25	53.00	
5,579.18				7/28/04	55.06	52.81	
5,579.06				8/30/04	55.18	52.93	
5,578.78				9/16/04	55.46	53.21	
5,577.80				10/11/04	56.44	54.19	
5,577.13				11/16/04	57.11	54.86	
5,576.96				12/22/04	57.28	55.03	
5,576.63				1/18/05	57.61	55.36	
5,576.82				2/28/05	57.42	55.17	
5,576.86				3/15/05	57.38	55.13	
5,577.52				4/26/05	56.72	54.47	
5,578.01				5/24/05	56.23	53.98	
5,578.15				6/30/05	56.09	53.84	
5,577.90				7/29/05	56.34	54.09	
2,211.70				1127103	50.54	5 1.07	

Water Elevation (WL)	Land Surface (LSD) 5,631.99	Measuring Point Elevation (MP) 5,634.24	Length Of Riser (L) 2.25	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,578.02				9/12/05	56.22	53.97	
5,577.56				12/7/05	56.68	54.43	
5,579.69				3/8/06	54.55	52.30	
5,578.34				6/13/06	55.90	53.65	
5,577.94				7/18/06	56.30	54.05	
5,578.01				11/7/06	56.23	53.98	
5578.43				2/27/07	55.81	53.56	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
•	5,621.92	5,623.62	1.70				121.33
5,548.32				1/3/02	75.30	73.60	
5,548.73				2/6/02	74.89	73.19	
5,549.03				3/26/02	74.59	72.89	
5,548.84				4/9/02	74.78	73.08	
5,549.30				5/23/02	74.32	72.62	
5,549.01				6/5/02	74.61	72.91	
5,549.22				7/8/02	74.40	72.70	
5,549.44				8/23/02	74.18	72.48	
5,549.57				9/11/02	74.05	72.35	
5,549.64				10/23/02	73.98	72.28	
5,549.58				11/22/02	74.04	72.34	
5,549.62				12/3/02	74.00	72.30	
5,549.85				1/9/03	73.77	72.07	
5,549.91				2/12/03	73.71	72.01	
5,550.15				3/26/03	73.47	71.77	
5,550.01				4/2/03	73.61	71.91	
5,550.31				5/1/03	73.31	71.61	
5,550.44				6/9/03	73.18	71.48	
5,550.33				7/7/03	73.29	71.59	
5,550.35				8/4/03	73.27	71.57	
5,550.44				9/11/03	73.18	71.48	
5,550.47				10/2/03	73.15	71.45	
5,550.60				11/7/03	73.02	71.32	
5,550.60				12/3/03	73.02	71.32	
5,550.94				1/15/04	72.68	70.98	
5,551.00				2/10/04	72.62	70.92	
5,550.34				3/28/04	73.28	71.58	
5,551.54				4/12/04	72.08	70.38	
5,551.89				5/13/04	71.73	70.03	
5,551.94				6/18/04	71.68	69.98	
5,552.49				7/28/04	71.13	69.43	
5,552.74				8/30/04	70.88	69.18	
5,553.01				9/16/04	70.61	68.91	
5,553.11				10/11/04	70.51	68.81	
5,553.19				11/16/04	70.43	68.73	
5,553.53		a.		12/22/04	70.09	68.39	
5,553.31				1/18/05	70.31	68.61	
5,553.84				2/28/05	69.78	68.08	
5,554.04				3/15/05	69.58	67.88	
5,554.23				4/26/05	69.39	67.69	
5,553.87				5/24/05	69.75	68.05	
5,554.46				6/30/05	69.16	67.46	
5,554.57				7/29/05	69.05	67.35	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,621.92	5,623.62	1.70				121.33
5,553.86			-	9/12/05	69.76	68.06	
5,555.30				12/7/05	68.32	66.62	
5,556.20				3/8/06	67.42	65.72	
5,556.48				6/14/06	67.14	65.44	
5,556.37				7/18/06	67.25	65.55	
5,556.94				11/7/06	66.68	64.98	
5557.92				2/27/07	65.7	64	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface		Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(((1)	5,622.38	5,624.03	1.65	Withitti	(DIW-IVII)	(biw.LSD)	121.33
5,580.71	5,022.50	3,021.03	1.05	8/23/02	43.32	41.67	121.33
5,581.34				9/11/02	42.69	41.04	
5,581.13				10/23/02	42.90	41.25	
5,581.27				11/22/02	42.76	41.11	
5,581.35				12/3/02	42.78	41.03	
5,582.38				1/9/03	41.65	40.00	
5,582.27				2/12/03	41.76	40.11	
5,582.51				3/26/03	41.52	39.87	
5,581.91				4/2/03	42.12	40.47	
5,582.72				5/1/03	41.31	39.66	
5,582.93				6/9/03	41.10	39.45	
5,583.01				7/7/03	41.10	39.43	
5,583.11				8/4/03	40.92	39.27	
5,583.35				9/11/03	40.68	39.27	
5,583.52				10/2/03	40.51	38.86	
5,583.57				10/2/03	40.46	38.81	
5,583.81				12/3/03	40.40	38.57	
5,584.17				1/15/04	39.86	38.21	
5,584.19				2/10/04	39.84	38.19	
5,584.31				3/28/04	39.84	38.07	
5,584.70				3/26/04 4/12/04	39.72	37.68	
5,584.68				5/13/04	39.35 39.35	37.08 37.70	
5,584.73				6/18/04	39.30	37.65	
5,585.16				7/28/04	38.87	37.03	
5,585.18				8/30/04	38.85	37.22	
5,585.29				9/16/04	38.74	37.20	
5,585.65				10/11/04	38.38	36.73	
5,585.71				11/16/04	38.32	36.67	
5,586.15				12/22/04	37.88	36.23	
5,585.94				1/18/05	38.09	36.44	
5,586.36				2/28/05	37.67	36.02	
5,586.75				3/15/05	37.28	35.63	
5,587.00				4/26/05	37.28	35.38	
5,587.00				5/24/05	36.88	35.23	
5,587.38				6/30/05	36.65	35.23	
5,587.38				7/29/05	36.65	35.00	
5,587.74				9/12/05	36.29	33.00 34.64	
5,588.23				9/12/03 12/7/05	35.80	34.15	
5,588.72				3/8/06			
5,588.14					35.31	33.66	
5,588.13				6/13/06	35.89	34.24	
5,584.50				7/18/06	35.90	34.25	
				11/7/06	39.53	37.88	
5588.65				2/27/07	35.38	33.73	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,618.09	5,619.94	1.85	· · ·			121.33
5,529.66				8/23/02	90.28	88.43	
5,530.66				9/11/02	89.28	87.43	
5,529.10				10/23/02	90.84	88.99	
5,530.58				11/22/02	89.36	87.51	
5,530.61				12/3/02	89.33	87.48	
5,529.74				1/9/03	90.20	88.35	
5,531.03				2/12/03	88.91	87.06	
5,531.82				3/26/03	88.12	86.27	
5,524.63				4/2/03	95.31	93.46	
5,531.54				5/1/03	88.40	86.55	
5,538.46				6/9/03	81.48	79.63	
5,539.38				7/7/03	80.56	78.71	
5,540.72				8/4/03	79.22	77.37	
5,541.25				9/11/03	78.69	76.84	
5,541.34				10/2/03	78.60	76.75	
5,541.69				11/7/03	78.25	76.40	
5,541.91				12/3/03	78.03	76.18	
5,542.44				1/15/04	77.50	75.65	
5,542.47				2/10/04	77.47	75.62	
5,542.84				3/28/04	77.10	75.25	
5,543.08				4/12/04	76.86	75.01	
5,543.34				5/13/04	76.60	74.75	
5,543.40				6/18/04	76.54	74.69	
5,544.06				7/28/04	75.88	74.03	
5,544.61				8/30/04	75.33	73.48	
5,545.23				9/16/04	74.71	72.86	
5,546.20				10/11/04	73.74	71.89	
5,547.43				11/16/04	72.51	70.66	
5,548.96				12/22/04	70.98	69.13	
5,549.02				1/18/05	70.92	69.07	
5,550.66				2/28/05	69.28	67.43	
5,551.26				3/15/05	68.68	66.83	
5,552.23				4/26/05	67.71	65.86	
5,552.87				5/24/05	67.07	65.22	
5,553.42				6/30/05	66.52	64.67	
5,554.00				7/29/05	65.94	64.09	
5,555.21				9/12/05	64.73	62.88	
5,558.13				12/7/05	61.81	59.96	
5,562.93				3/8/06	57.01	55.16	
5,564.39				6/13/06	55.55	53.70	
5,562.09				7/18/06	57.85	56.00	
5,565.49				11/7/06	54.45	52.60	
5571.08				2/27/07	48.86	47.01	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,610.92	5,612.77	1.85		<u> </u>		121.33
5,518.90				8/23/02	93.87	92.02	
5,519.28				9/11/02	93.49	91.64	
5,519.95				10/23/02	92.82	90.97	
5,520.32				11/22/02	92.45	90.60	
5,520.42				12/3/02	92.35	90.50	
5,520.70				1/9/03	92.07	90.22	
5,520.89				2/12/03	91.88	90.03	
5,521.12				3/26/03	91.65	89.80	
5,521.12				4/2/03	91.65	89.80	
5,521.24				5/1/03	91.53	89.68	
5,521.34				6/9/03	91.43	89.58	
5,521.36				7/7/03	91.41	89.56	
5,521.35				8/4/03	91.42	89.57	
5,521.30				9/11/03	91.47	89.62	
5,521.35				10/2/03	91.42	89.57	
5,521.36				11/7/03	91.41	89.56	
5,521.16				12/3/03	91.61	89.76	
5,521.29				1/15/04	91.48	89.63	
5,521.36				2/10/04	91.41	89.56	
5,521.46				3/28/04	91.31	89.46	
5,521.54				4/12/04	91.23	89.38	
5,521.59				5/13/04	91.18	89.33	
5,521.69				6/18/04	91.08	89.23	
5,521.71				7/28/04	91.06	89.21	
5,521.76				8/30/04	91.01	89.16	
5,521.77				9/16/04	91.00	89.15	
5,521.79				10/11/04	90.98	89.13	
5,521.80				11/16/04	90.97	89.12	
5,521.82				12/22/04	90.95	89.10	
5,521.82				1/18/05	90.95	89.10	
5,521.86				2/28/05	90.91	89.06	
5,521.85				3/15/05	90.92	89.07	
5,521.91				4/26/05	90.86	89.01	
5,521.93				5/24/05	90.84	88.99	
5,521.94				6/30/05	90.83	88.98	
5,521.84				7/29/05	90.93	89.08	
5,521.99				9/12/05	90.78	88.93	
5,522.04				12/7/05	90.73	88.88	
5,522.05				3/8/06	90.72	88.87	
5,522.27				6/13/06	90.50	88.65	
5,521.92				7/18/06	90.85	89.00	
5,520.17				11/7/06	92.60	90.75	
5522.24				2/27/07	90.53	88.68	

Water Levels and Data over Time White Mesa Mill - Well TW4-15 (MW-26) Total or

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,624.15	5,625.45	1.30				121.33
5,574.75	***************************************			8/23/02	50.70	49.40	
5,574.97				9/11/02	50.48	49.18	
5,575.10				10/23/02	50.35	49.05	
5,574.99				11/22/02	50.46	49.16	
5,575.28				12/3/02	50.17	48.87	
5,575.41				1/9/03	50.04	48.74	
5,575.43				2/12/03	50.02	48.72	
5,575.63				3/26/03	49.82	48.52	
5,575.91				4/2/03	49.54	48.24	
5,575.81				5/1/03	49.64	48.34	
5,572.36				6/9/03	53.09	51.79	
5,570.70				7/7/03	54.75	53.45	
5,570.29				8/4/03	55.16	53.86	
5,560.94				9/11/03	64.51	63.21	
5,560.63				10/2/03	64.82	63.52	
5,560.56				11/7/03	64.89	63.59	
5,564.77				12/3/03	60.68	59.38	
5,570.89				1/15/04	54.56	53.26	
5,572.55				2/10/04	52.90	51.60	
5,574.25				3/28/04	51.20	49.90	
5,574.77				4/12/04	50.68	49.38	
5,575.53				5/13/04	49.92	48.62	
5,575.59				6/18/04	49.86	48.56	
5,576.82				7/28/04	48.63	47.33	
5,527.47				9/16/04	97.98	96.68	
5,553.97				11/16/04	71.48	70.18	
5,562.33				12/22/04	63.12	61.82	
5,550.00				1/18/05	75.45	74.15	
5,560.02				4/26/05	65.43	64.13	
5,546.11				5/24/05	79.34	78.04	
5,556.71				6/30/05	68.74	67.44	
5,554.95				7/29/05	70.50	69.20	
5,555.48				9/12/05	69.97	68.67	
5,551.09				12/7/05	74.36	73.06	
5,552.85				3/8/06	72.60	71.30	
5,554.30				6/13/06	71.15	69.85	
5,554.87				7/18/06	70.58	69.28	
5,550.88				11/7/06	74.57	73.27	
5558.77				2/27/07	66.68	65.38	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.19	5,624.02	1.83		,		121.33
5,562.91			-	8/23/02	61.11	59.28	
5,563.45				9/11/02	60.57	58.74	
5,563.75				10/23/02	60.27	58.44	
5,563.68				11/22/02	60.34	58.51	
5,563.68				12/3/02	60.34	58.51	
5,564.16				1/9/03	59.86	58.03	
5,564.25				2/12/03	59.77	57.94	
5,564.53				3/26/03	59.49	57.66	
5,564.46				4/2/03	59.56	57.73	
5,564.79				5/1/03	59.23	57.40	
5,564.31				6/9/03	59.71	57.88	
5,563.29				7/7/03	60.73	58.90	
5,562.76				8/4/03	61.26	59.43	
5,561.73				9/11/03	62.29	60.46	
5,561.04				10/2/03	62.98	61.15	
5,560.39				11/7/03	63.63	61.80	
5,559.79				12/3/03	64.23	62.40	
5,561.02				1/15/04	63.00	61.17	
5,561.75				2/10/04	62.27	60.44	
5,562.98				3/28/04	61.04	59.21	
5,563.29				4/12/04	60.73	58.90	
5,564.03				5/13/04	59.99	58.16	
5,564.09				6/18/04	59.93	58.10	
5,565.08				7/28/04	58.94	57.11	
5,564.56				8/30/04	59.46	57.63	
5,563.55				9/16/04	60.47	58.64	
5,561.79				10/11/04	62.23	60.40	
5,560.38				11/16/04	63.64	61.81	w.*
5,559.71				12/22/04	64.31	62.48	
5,559.14				1/18/05	64.88	63.05	
5,558.65				2/28/05	65.37	63.54	
5,558.54				3/15/05	65.48	63.65	
5,558.22				4/26/05	65.80	63.97	
5,558.54				5/24/05	65.48	63.65	
5,559.24				6/30/05	64.78	62.95	
5,559.38				7/29/05	64.64	62.81	
5,559.23				9/12/05	64.79	62.96	
5,557.67				12/7/05	66.35	64.52	
5,557.92				3/8/06	66.10	64.27	
5,558.47				6/13/06	65.55	63.72	
5,558.42				7/18/06	65.60	63.77	
5,558.09				11/7/06	65.93	64.10	
5557.34				2/27/07	66.68	64.85	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.41	5,625.24	1.83				121.33
5,542.17				8/23/02	83.07	81.24	
5,542.39				9/11/02	82.85	81.02	
5,542.61				10/23/02	82.63	80.80	
5,542.49				11/22/02	82.75	80.92	
5,542.82				12/3/02	82.42	80.59	
5,543.03				1/9/03	82.21	80.38	
5,543.04				2/12/03	82.20	80.37	
5,543.41				3/26/03	81.83	80.00	
5,543.69				4/2/03	81.55	79.72	
5,543.77				5/1/03	81.47	79.64	
5,544.01				6/9/03	81.23	79.40	
5,544.05				7/7/03	81.19	79.36	
5,543.99				8/4/03	81.25	79.42	
5,544.17				9/11/03	81.07	79.24	
5,544.06				10/2/03	81.18	79.35	
5,544.03				11/7/03	81.21	79.38	
5,543.94				12/3/03	81.30	79.47	
5,543.98				1/15/04	81.26	79.43	
5,543.85				2/10/04	81.39	79.56	
5,544.05				3/28/04	81.19	79.36	
5,544.33				4/12/04	80.91	79.08	
5,544.55				5/13/04	80.69	78.86	
5,544.59				6/18/04	80.65	78.82	
5,545.08				7/28/04	80.16	78.33	
5,545.26				8/30/04	79.98	78.15	
5,545.48				9/16/04	79.76	77.93	
5,545.61				10/11/04	79.63	77.80	
5,545.46				11/16/04	79.78	77.95	
5,545.66				12/22/04	79.58	77.75	
5,545.33				1/18/05	79.91	78.08	
5,545.51				2/28/05	79.73	77.90	
5,545.57				3/15/05	79.67	77.84	
5,545.46				4/26/05	79.78	77.95	
5,545.45				5/24/05	79.79	77.96	
5,545.33				6/30/05	79.91	78.08	
5,545.16				7/29/05	80.08	78.25	
5,545.54				9/12/05	79.70	77.87 ⁻	
5,545.77				12/7/05	79.47	77.64	
5,546.09				3/8/06	79.15	77.32	
5,545.94				6/13/06	79.30	77.47	
5,545.94				7/18/06	79.30	77.47	
5,546.24				11/7/06	79.00	77.17	
5546.81				2/27/07	78.43	76.6	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,639.13	5,641.28	2.15				121.33
5,585.13		<u> </u>		8/23/02	56.15	54.00	
5,585.41				9/11/02	55.87	53.72	
5,585.47				10/23/02	55.81	53.66	
5,585.40				11/22/02	55.88	53.73	
5,585.68				12/3/02	55.60	53.45	
5,585.90				1/9/03	55.38	53.23	
5,590.79				2/12/03	50.49	48.34	
5,586.18				3/26/03	55.10	52.95	
5,586.36				4/2/03	54.92	52.77	
5,586.24				5/1/03	55.04	52.89	
5,584.93				6/9/03	56.35	54.20	
5,584.46				7/7/03	56.82	54.67	
5,584.55				8/4/03	56.73	54.58	
5,584.01				9/11/03	57.27	55.12	
5,583.67				10/2/03	57.61	55.46	
5,583.50				11/7/03	57.78	55.63	
5,584.08				12/3/03	57.20	55.05	
5,585.45				1/15/04	55.83	53.68	
5,585.66				2/10/04	55.62	53.47	
5,586.13				3/28/04	55.15	53.00	
5,586.39				4/12/04	54.89	52.74	
5,586.66				5/13/04	54.62	52.47	
5,586.77				6/18/04	54.51	52.36	
5,587.35				7/28/04	53.93	51.78	
5,586.34				8/30/04	54.94	52.79	
5,585.85				9/16/04	55.43	53.28	
5,585.22				10/11/04	56.06	53.91	
5,584.70				11/16/04	56.58	54.43	
5,584.81				12/22/04	56.47	54.32	
5,584.68				1/18/05	56.60	54.45	
5,585.02				2/28/05	56.26	54.11	
5,585.25				3/15/05	56.03	53.88	
5,586.31				4/26/05	54.97	52.82	
5,586.97				5/24/05	54.31	52.16	
5,586.58				6/30/05	54.70	52.55	
5,586.10				7/29/05	55.18	53.03	
5,586.05				9/12/05	55.23	53.08	
5,585.86				12/7/05	55.42	53.27	
5,587.13				3/8/06	54.15	52.00	
5,585.93				6/13/06	55.35	53.20	
5,585.40				7/18/06	55.88	53.73	
5,585.38				11/7/06	55.90	53.75	
5585.83				2/27/07	55.45	53.75	
2202.03				212 1101	JJ. 4 J	33.30	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,629.53	5,631.39	1.86				121.33
5,581.88				8/23/02	49.51	47.65	
5,582.14				9/11/02	49.25	47.39	
5,582.06				10/23/02	49.33	47.47	
5,582.07				11/22/02	49.32	47.46	
5,582.16				12/3/02	49.23	47.37	
5,582.28				1/9/03	49.11	47.25	
5,582.29				2/12/03	49.10	47.24	
5,582.74				3/26/03	48.65	46.79	
5,582.82				4/2/03	48.57	46.71	
5,548.47				5/1/03	82.92	81.06	
5,564.76				6/9/03	66.63	64.77	
5,562.53				7/7/03	68.86	67.00	
5,564.10				8/4/03	67.29	65.43	
5,566.01				8/30/04	65.38	63.52	
5,555.16				9/16/04	76.23	74.37	
5,549.80				10/11/04	81.59	79.73	
5,546.04				11/16/04	85.35	83.49	
5,547.34				12/22/04	84.05	82.19	
5,548.77				1/18/05	82.62	80.76	
5,551.18				2/28/05	80.21	78.35	
5,556.81				3/15/05	74.58	72.72	
5,562.63				4/26/05	68.76	66.90	
5,573.42				5/24/05	57.97	56.11	
5,552.94				7/29/05	78.45	76.59	
5,554.00				9/12/05	77.39	75.53	
5,555.98				12/7/05	75.41	73.55	
5,552.00				3/8/06	79.39	77.53	
5,545.74				6/13/06	85.65	83.79	
5,544.06				7/18/06	87.33	85.47	
5,548.81				11/7/06	82.58	80.72	
5543.59				2/27/07	87.8	85.94	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,628.52	5,629.53	1.01				106.0
5,565.70				7/29/05	63.83		
5,546.53				8/30/05	83.00		
5,540.29				9/12/05	89.24		
5,541.17				12/7/05	88.36		
5,540.33				3/8/06	89.20		
5,530.43				6/13/06	99.10		
5,569.13				7/18/06	60.40		
5,547.95				11/7/06	81.58		
5549.25				2/27/07	80.28		

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well	
	5,638.20	5,639.35	1.15				120.92	
5,582.98				7/29/05	56.37			
5,583.43				8/30/05	55.92			
5,581.87				9/12/05	57.48			
5,580.50				12/7/05	58.85			
5,583.64				3/8/06	55.71			
5,580.55				6/13/06	58.80			
5,578.95				7/18/06	60.40			
5,578.47				11/7/06	60.88			
5579.53				2/27/07	59.82			

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,627.83	5,629.00	1.17				113.5
5,571.89 5,572.20				7/29/05 8/30/05	57.11 56.80		
5,572.08 5,571.61				9/12/05 12/7/05	56.92 57.39		
5,571.85 5,571.62				3/8/06 6/13/06	57.15 57.38		
5,571.42 5,571.02 5571.24				7/18/06 11/7/06 2/27/07	57.58 57.98 57.76		

ANALYTICAL SUMMARY REPORT

Merch 28, 2007

Denison Mines 6425 S Hwy 191 PO Box 809 Blanding, UT 84511

Workarder No.: C07030109

Project Name: 1st Quarter Chloroform Sampling Event

Energy Laboratories, Inc. received the following 29 samples from Denison Mines on 3/2/2007 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Da	ite Matrix	Test
C27030109-001	MW-4	02/28/07 15:40	03/02/07	Aqueous	Chloride Nitrogon, Nitrate I Nitrite SW82608 VOCs, Standard List
C07030109-002	1 W4-A	02/28/07 15:50	03/02/07	Aqueous	Same As Above
C07030109-003	TVV4-1	02/28/07 15:18	03/02/07	Aqueous	Same As Above
C07030109-004]W4-2	02/28/07 16:03	03/02/07	Aqueous	Same As Above
C07030109-005	TW4-3	02/28/07 10:33	03/02/07	Aqueous	Same As Above
C07030109-006	TW4-4	02/28/07 15:28	03/02/07	Aqueou ₅	Same As Above
C07030109-007	TW4-5	02/2B/07 13:59	03/02/07	Aquecus	Same As Above
C07030109-008	1W4-6	02/28/07 13:00	03/02/07	Aqueous	Same As Above
C07030109-009	TW4-7	02/28/07 15:00	03/02/07	Vdneone	Same As Above
C07030109-010	TW4 B	02/28/07 12:21	03/02/07	Aqueous	Бат e As Acovo
C07030109-011	TW4-9	02/28/07 12:08	03/02/07	Aqueous	Same As Above
C07030109-012	TW4 · 10	02/28/07 14:45	C3/02/07	Aqueous	Samo As Above
C07030109-013	TW4-11	02/28/07 16:13	03/02/07	Aqueous	Same As Above
C07030109-014	TW4-12	02/28/07 11:10	09/02/07	Aqueous	Same As Abovo
C07030109-015	TW4-13	02/28/07 11:20	03/02/07	Aqueous	Same As Above
C07030109-016	1W4-14	02/28/07 11:37	03/02/07	Aqueous	Same As Above
C07030109-017	TW4-15	02/28/07 14:22	03/02/07	Aqueous	Seme As Above
007030109-018	TW4-16	02/28/07 12:46	03/02/07	Aqueous	Same As Above
C07C30109-019	 TW4-17	02/28/07 11:53	03/02/07	Aqueous	Same As Above
C07030109-020	TW4-18	02/28/07 12:34	03/02/07	Aqueous	Same As Above
C07030109-021	TW4-19	02/28/07 16:35	5 03/02/07	Aqueous	Same As Above
C07030109-022	TW4-20	02/23/07 16:23	3 03/02/07	Aqueous	Same As Above
C07030109-023	TW4-21	02/28/07 14:10	03/02/07	Aqueous -	Same As Above
C07030109-024	TW4-22	02/28/07 14:34	03/02/07	Aqueous	Same As Above

ENERGY LABORATORIES, INC. • 2393 Salt Cresk Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888,235.0515 • 307.235.0515 • Fax 307.234.1839 • cssper@energylab.com • www.enorgylab.com

C07030109-025 TW4-60	02/28/07 13:33 03/02/07	Aqueous	Same As Above	
C07030109-026 TVV4-63	02/28/07 13:48 03/02/07	Aqueous	Same As Above	······································
C07030109-027 TW4-65	02/28/07 16:23 03/02/07	Aqueous	Same As Above	_
C07030109-028 TW4-70	02/28/07 13:58 03/02/07	Aqueous	Same As Above	
C07030109-029 Trip Blank	02/28/07 00:00 03/02/07	Aqueous	SW8260B VOCs, Standard List	

There were no problems with the analyses and all data for associated QC mot EPA or laboratory specifications except where noted in the Case Namative or Report.

If you have any questions regarding these tests results, please call.

Report Approved By:

Track#007030109 Page

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-001

Client Sample ID: MW-4

Report Date: 03/23/07

Collection Date: 02/28/07 15:40

DateReceived: 03/02/07

Matrix: Aqueous

Anelyses	Result	Units	Qualifiers	RL	MCD	Method	Analysis Date / By
MAJOR IONS							
Chlor da	47	mg/L	•	1		A4503-C' B	03/08/07 12.46 / ji
Nitrogen, Nitrate+Ni;rite as N	5.3	mg/L	Đ	0.2		E353,2	03/06/07 10:38 / lji
VOLATILE ORGANIC COMPOUNDS							
Cargon tetrachicride	1. 5	ug/L		1.0		SW8260B	03/38/07 04:59 / dkh
Chloraform	2300	ug/L	D	50		\$W6260E	03/05/07 17.14 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	03/C6/07 04:59 / dkh
Mathylene chloride	ND	ug/L		1.0		SW82EOP.	03/06/07 04:59 / dkh
Surr: 1,2-Dichlorobenzene-d4	181	%REC			80-120	SW8260B	03/C6/07 04:59 / dkh
Surr: D bromofluorome:hana	98.0	%REC			70-130	SW82603	03/06/07 04:59 / dkh
Surr: p-Bromofluorobenzene	99,0	%REC			80-120	SW82603	03/08/07 04:59 / dkh
Surr: Tolyene-d8	96.0	%REC			20-120	5W82603	03/06/07 04:59 / dkh

Report Definitions: RL - Analyte reporting timit.

QCL - Quality control limit.

D - RL lacreased due to sample matrix interference.

MCL - Maximum contaminant level.

ND - Not detected at the reporting I mit.

Client:

Denison Mines

Project

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-002

Client Sample ID: TW4-A

Report Date: 03/23/07

Collection Date: 02/28/07 15:50

DateReceived: 03/02/07

Matrix: Acueque

Analyses	Reault	Unite	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	8۔	mg/L		1		A4500-ÇI B	03/06/07 13:03 / jl
Ni:rogen, Nijrate+Nitrite sa N	7.1	m g /L	D	0.2		E353.2	03/06/07 10:40 / ljt
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrach oride	1.9	ug/L		1.0		SW8260B	03/06/37 05:38 / dkh
Chloroform	2500	ug/L	Ď	50		SW4260B	03/05/97 17:53 / dkh
Chloromethane	ND	ug/L		1.0		SW3260FI	03/05/07 05:38 / dkh
Methylane chloride	ND	ug/L		1.0		SW3260B	03/05/07 05:38 / dkh
Surr; 1,2-Dichlorobenzene-d4	101	%REC			63-123	SW026CB	03/05/07 05:38 / dkh
Surr. Diaremofluoromethane	102	%REC			73-133	SW926CB	03/06/C7 05:38 / dkh
Suit: p-Biomofluoroberzene	100	%REC			60-120	SW926CB	03/06/07 D5:38 / dkh
Surr: Toluens-d8	96.0	%REC			80-120	\$W9260B	03/06/07 05:3B / dkh

Report

RL - Analyte reporting limit.

Definitions: GCL - Quality control imit.

O - RL increased due to sample matrix interference.

MCL - Meximum contaminant level.

ND - Not detected at the reporting limit

Client:

Derison Mines

Project: Lab ID: 1st Quarter Chloroform Sampling Event

C07030109-003

Client Sample ID: TW4-1

Report Date: 03/23/07

Collection Date: 02/28/07 15:18

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualiflers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	47	mg/L		1		A4500-C(B	03/05/37 13:05 / ji
Nitrogen, Nitrate+Nitrite as N	8.9	mg/L	O	0.3		E353.2	03/03/07 10:43 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachter de	1.2	ψg/L		1.0		SV/B26CB	03/06/07 q6;17 / dkp
Ch oraform	1900	ug/L	D	50		SW6260B	03/05/07 18:32 / dkh
Ch oromethane	ND	ug/L		1.0		SW6260B	03/06/07 06:17 / dkh
Methylens chloride	ND	ug/L		10		SW8260B	03/08/07 06:17 / dkh
Surr: 1,2-Dichlorobenzanc-d4	101	%REC			80-120	SWR2508	03/06/07 06:17 / dkh
Surr, Dibromofjuorometkare	102	%REC			70-130	\$\\\\82606	03/06/07 05:17 / dkh
Surr: p-Bremofluorobonzene	68.0	%REC			80-120	SW626013	03/05/07 06:17 / dkh
Surr: Toluene-d3	99.0	%REG			60-120	SW8250B	03/96/07 Q6:17 / Bkh

Report

RL - Analyte reporting limit.

Octinitions: QCI. - Quality contro! limit.

D - RL increased due to sample matrix interference.

MCL - Max mum contaminant level.

ND - Not carected at the reporting limit.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-004

Client Sample ID: TW4-2

Report Date: 03/23/07

Collection Date: 02/28/07 16:03

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Unita	Qualifiers	RL.	ØCF WC/T₁	Mothod	Analysis Date / By
MAJOR IONS							
Chloride	54	rg/L		•		A4500-CFS	Q3/Q5/C7 13:08 / JI
Nitrogen, Nitrale+Nitrite as N	7.3	mg/L	D	0.2		E353.2	03/09/07 10:45 / ljil
VOLATILE ORGANIC COMPOUNDS							
Carbon letrachionde	1.8	ug/L		1.0		\$VV8260B	03/06/07 05:56 / dkh
Ch'aráform	2300	ugiA.	D	50		5VV926CB	03/05/07 19:11 / dkn
Chioromethane	ND	ug/L		10		SW82600	03/06/07 05:56 / dikh
Mathylene chlorida	ND	ug/L		1.0		SV/82606	03/06/07 05:56 / dkh
Surr: 1,2-Dich brobenzene-d4	102	%REC			80-120	SWEZGOB	03/06/07 06:56 / dkh
Surr: Dibromofluoromethane	100	WREC			70-130	SV/8260B	03/06/07 05:56 / dikin
Surr: p-Bromof vorobenzare	98.0	%REC			80-120	SWE260D	03/06/07 05:56 / dkh
Suir: Tokiene-d8	87 O	%REC			80-120	SV/8260B	03/06/07 06:56 / dkh

Report Definitions: RL - Analyte reporting limit.

DGL - Quality control limit.

D - K'_ norsassed due to sample matrix interference.

MCL - Maximum con;aminant leve .

ND - Not detected at the reporting limit.

Client:

Denison Mines

Report Date: 03/23/07

Project:

1st Quarter Chioroform Sampling Event

Collection Date: 02/26/07 10:33

Lab ID:

C07030109-005

DateReceived: 03/02/07

Client Sample ID: TW4-3

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Dete / By
MAJOR IONS							
Chlor de	22	mg/L		j		A4500-C" B	03/06/07 13:09 / ji
Nitrogen, Nitrate+Nitrile as N	3.1	mg/L		0.1		E353.2	03/06/07 10:48 / iji
VOLATILE ORGANIC COMPOUNDS							
Corbon tetrachloride	ND	ug/L		1.0		SW8260B	03/05/07 23:06 / dkh
Chloreform	ND	ug/L		1.0		SW82685	03/05/07 23:06 / dkh
Chloromethane	ND	սց/ե		1.0		SW8250B	03/05/07 23:06 / dkh
Methylene chloride	ND	∟g/L		1.0		SW8260B	03/05/07 23:06 / dkh
Surr. 1,2-Dichterobenzene-rl4	101	%REC			80-120	\$\\\\$2608	03/05/07 23:08 / clkh
Surr: Dibromeflucromethane	99.C	%REC			70-130	SW8260B	03/05/07 23:06 / dkh
Surr: p-Bromoff Juroixenzene	99.0	%REC			80-120	SW8260B	03/05/07 23:06 / dkh
Surr: Toluene-d8	99.0	%REC			80-120	8W8260B	03/05/07 23:06 / dkh

Roport

RL - Analyte reporting limit. Definitions: QCL - Quality control limit.

MCL - Maximum contam nant level. ND - Not detected at the reporting limit.

Cilent:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-005

Client Sample ID: TW4-4

Report Date: 03/23/07

Collection Date: 02/28/07 15:28

DatoReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Unite	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chlorica	49	mg/L		1		A4500-C1 B	33/06/07 13:11 / ji
Nurogen, Nitrate+Nitrite as N	9.0	m g u'L	D	0.2		E353.2	03/06/07 10:58 / (j)
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachioride	15	ug/L		1.0		5W8260B	03/06/07 07:36 / dkh
Chiarotom	2200	ug/L	D	50		\$\ V 8260B	03/05/07 19/51 / dkh
Chloromethane	ND	·wg/L		1.0		SW8260B	03/06/97 07:35 / dkh
Methylone chloride	ND	ug/L		10		SW#260B	03/09/07 07:38 / dkh
Surr. 1.2-Dichlorobenzena-d4	101	WREC			80-120	SW8260B	C3/C6/37 07:36 / dkh
Surr: Dibromofluoromethama	101	%RFC			70-130	SW826JB	03/03/07 07:36 / dkh
Surr: p-Bromofluorobanzono	100	%REC			80-120	SW\$260B	03/06/07 07:35 / dkh
Surr. Toluene-d8	97.0	%REC			80-120	SW8260B	03/06/37 07:36 / dkh

Report

RL - Analyte reporting flmit.

Definitions: QGL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

007030109-007

Client Sample ID: TVV4-5

Report Date: 03/23/07

Collection Date: 02/28/07 13:58

DateRoceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualiflers	RL	OCF WCF1	Method	Analysis Date / By
MAJOR IONS				٠			
Ch oride	57	ന്വേട്ട്.		1		A4500-CI B	03/05/07 13:12 / 1
Nitrogen, Nitrete+Nitrite as N	7.8	mg/L	D	0.2		E3\$3 2	03/08/07 11:30 / jt
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachtoride	NĐ	µg/L		. 0		SW2260B	03/05/07 22:27 / dkh
Ch araform	33	ug/L		1.0		8V/026CB	Q3/05/07 22:27 / dkh
Chloromathano	ND	ug/L		.1.0		SWEZBOB	03/05/07 22:27 / dkh
Metnylene chloride	ND	ug/L		1,0		SW250B	03/05/07 22:27 / dkh
Surr. 1,2 Dichlorobenzene-d4	101	%REC			80-120	SWE260B	03/05/07 22:27 / dkh
Surr. Dibromofluoromethane	101	MREC			70:190	\$W6260B	Q3/05/07 22:27 / dkn
Surr: p-Bromofluorobenzere	100	%REC			80-120	SW8266B	03/05/07 22:27 / dkh
Surr: Talusne-dB	97.0	WREC			80-120	S/W8260B	03/05/07 22:27 / EKN

Report Definitions: RL - Analyte raporting limit.

CGL - Quetty control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID;

C07030109-008

Client Sample 1D: TW4-6

Report Date: 03/23/07

Collection Date: 02/28/07 13:00

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualiflers	RL	OCT.	Method	Analysis Date / By
MAJOR IONS						, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chlorida	3 2	ጠሟ/L		1		A4503-C' B	09/06/07 13:13 / (1
Nitrogen, Nitrate+Nitrile as N	1.6	mg/L		0.1		E353.2	03/05/07 11:03 / iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachicride	- ND	Jg/L		1.0		SW8260B	03/05/07 23:45 / dkh
Chloraform	46	Ug/L		1.0		SW#260B	03/05/07 23:45 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	03/05/07 23:46 / dkh
Methylene chloride	ND	ugiL		1.6		SW82603	03/05/07 23:45 / dkh
Surr: 1,2-Dichlorobenzene-d4	102	XREC			E0-120	\$W8260B	03/Ç5/07 23:45 / dkh
Surr: D promoflugromethane	102	%RÉC			70-130	SW8250B	02/05/07 23:45 / dkh
Surr: p-Bromofluorabenzene	99,0	%REC			80-120	SW8260B	- 03/05/07 23 45 / dkh
Surr: Toluene-d8	97.3	%REC			80-120	8W82803	03/05/07 23:45 / dkh

Report Definitions: RL - Analyte reporting limit.

Doffmitions: QCL - Quality control limit.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

Client Sample ID: TW4-7

007030109-009

Roport Date: 03/23/07

Coffection Date: 02/28/07 15:00

DateRecoived: 03/02/07

Matrix: Aqueous

Analyses	Result	Unite	Qualifiers	RL	OCT WCT	Method	Analysis Dato / By
MAJOR IONS							
Chlorida	47	mgÆ		1		A4500-Ci B	03/06/ 07 13:14 / jl
N trcgen, N trate+ Nitrite as N	E. 0	mg/L	D	D. 2		E353.2	03/06/07 11:05 / Ij1
VOLATILE ORGANIC COMPOUNDS							
Carhon tetrachloride	1.1	ug/L		1.0		\$W826DB	00/06/07 08:15 / dkis
Chlaroform	1800	ug/L	D	50		5VV8260L)	03/05/07 20:31 / akh
Chloremethane	ND	μg/IL		1.0		SW8260B	03/06/07 08:15 / dkh
Methylene criar de	ND	∪g/L		1.0		SW#260B	03/06/07 08:15 / dkh
Surr: 1,2-Dichtorobenzene-d4	101	%REC			80-120	SVV0260D	03/06/07 08:15 / dkh
Surr; Dibromotlyoromethana	99.0	%REC			70-130	SV/8260B	03/06/07 08:15 / dkh
Surr. p-Bromofluoropenzene	100	%RFC			80-120	\$YV8260B	03/06/07 08:15 / dkh
Surr Toluene-dâ	95.0	%REC			80-120	SW8260B	03/06/07 08:15 / dkh

Report Definitions: RI. - Analyte reporting firmt.

QCL - Quality control limit.

D - Rt. Increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client;

Denison Mines

Project:

1s: Cuarter Chloroform Sampling Event

Lab 1D;

C07030109-010

Client Sample ID: TW4-8

Report Date: 03/23/07

Collection Dato: 02/28/07 12:21

DatoRoccived: C3/02/07

Matrix: Aqueous

Analyses	Rasult	Units	Qualificup	FIL.	der Wen	Method	Analysis Date / By
MAJOR IONS					<i>;</i>		
Chloride	39	mg/L		1		A4500-CI B	03/06/07 13 17 / jf
Nitrogen, Nitrate+Nitrite as N	0.7	mg/L		0.1		E353.2	03/06/07 11:00 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		\$W8260B	33/06/07 00:25 / dkh
Chloroform	2.5	ug/L		1.0		SW8260B	03/06/07 00:25 / dkh
Chloromethane	ND	ug/L		1.0		SW8260FI	03/06/07 00:25 / dkh
Mathylene chloride	ND	ug/L		1.0		SW62608	33/06/07 00:25 / dkh
Surr. 1 2-Dichlorobenzeno-d4	102	%REC			80-120	8W02630	03/06/07 00:25 / dkh
Surr, Dipromofluoromethane	101	%REC			70-139	SW8263B	C3/06/07 00:25 / dkh
Surr, p-Bremofluorobanzana	99.0	%REC			80-123	SW8260B	03/03/87 00:25 / 4kh
Sum: Toluene-d8	98.0	%REC			60-120	SW9260B	03/09/07 00:25 / dikin

Definitions: QCL - Quality control limit.

AL - Analyte reporting limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client:

Dan son Mines

Project:

1st Quarter Chloroform Sampling Event

Lab (D:

C07030109-011

Client Sample ID: TVV4-9

Report Date: 03/23/07

Collection Date: 02/28/07 12:08

DatoReceived: 03/02/07

Matrix: Aqueous

Ånalyses	Result	Units	Qualitiers	RL	OCT WCF.	Method	Analysis Date / By
MAJOR IONS			· · · · · · · · · · · · · · · · · · ·				
Ghlor de	44	mg/L		1		A4500 CI B	03/06/07 13:16 / //
N se efficiel+efatifik negorjik	0.5	m⊒∕L		0.1		F353.2	03/36/07 11:15 / iji
VOLATILE ORGANIC COMPOUNDS							
Carbon (etrachloride	ND	Jg/L		1.0		SW82603	03/06/07 01:04 / clkh
Chloroform	ND	ug/L		1.0		SW8260B	03/06/07 01:04 / dkh
Chlorome;hane	ND	ug/L		1.0		SW82602	03/06/07 01:04 / dkh
Methylane chiorida	ND	Jg/L		1.0		SW\$2603	03/06/07 01:04 / dkh
Surr. 1,2-Dichloroborzene-d4	102	%REC			80-120	SW8260B	03/06/07 01:04 / dikt
Surr: Dibromofluoromethene	97.0	%REC			70-130	SW8260B	03/06/07 01:04 / akh
Surr: p-Bromofluorobenzene	100	MREC			90-120	SW82603	03/06/07 01:04 / dkh
Surr: Toluene-d8	99.0	%REC			80-120	SW82603	09/06/07 01:04 / dkh

Report

RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-012

Client Sample ID: 1W4-10

Report Date: 03/23/07

Collection Date: 02/28/07 14:45

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Unite	Queliñers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	62	mg/L		ţ		∧4503-C1 B	03/06/07 13:19 / /[
Nitrogen, Nitralo+Nitrito as N	7.5	mg/L	, D	0.2		F353.2	03/36/07 11:18 / 1/1
VOLATILE ORGANIC COMPOUNDS							
Carbon ;etrachicride	ND	ug/L		1.0		SW62603	09/C6/07 08:54 / dkh
Chloroform	500	ug/L	0	10		SW82605	03/05/07 21:48 / dkh
Dhioramethane	ND	Jg/L		1.0		SW8260B	03/06/07 Q8:54 / dkh
Methy ene chioride	МЭ	ug/L		1.3		SW8260B	03/06/07 08:54 / dkh
Surr: 1,2-Dichlarchenzene-d4	100	%RFC			60-120	SW8260B	03/06/07 08:54 / dkh
Surr: Dibromafluoromethane	99.0	%REC			70-130	SW8260B	03/06/07 08:54 / dkh
Surr: p-Bromotluorobenzene	98.0	%REC			80-120	SW8260B	03/06/07 08:54 / dkh
Surr: Toluene-d8	98.0	%REC			80-120	SW6260B	03/06/07 08:54 / dkh

Report Refinitions RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

🐫 ; D • RL Increased due to sample matrix interference.

MCL - Maximum contaminant level.

Cilent:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-013

Client Sample ID: TW4-11

Report Date: 03/23/07

Collection Date: 02/26/07 16:13

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualiflers	RL	OCF MCT	Method	Analysis Date / By
MAJOR IONS		<u>, , , , , , , , , , , , , , , , , , , </u>	•				
Ghloride	54	mg/L		1		A4500-CI B	03/06/07 13:20 / jii
Nitrogen. Nitrete+Nitrite as N	10.1	mg/L	Ď	C.2		E353.2	03/06/07 11:20 / % .
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachioride	1.3	∟g/L		1.0		SW8260D	03/06/97 09:32 / dkh
Chloroform	3500	ug/L	D	50		SW8260B	03/05/97 21.10 / dkh
Chloromethane	ND	ug/L		1.0		6W8260B	03/06/07 09:32 / dkh
Methylena chlorida	1.6	cg/L		1.0		SW8260B	03/06/07 09:32 / dkb
Surv: 1.2-Dichtorobenzene-d4	102	%REC			80-120	SW82608	03/06/07 09:32 / dkn
Sum: Dibromofluorsmethane	102	%REC			70-130	SWR260R	03/06/37 09:32 / dkh
Surc p-Bromofluoroberzana	98.0	MREC			80-120	SW8260B	03/08/07 09:32 / dkh
Surr: Tollaene-ce	97.0	%RES			80-120	SW0260B	03/00/07 09: 52 / akh

Report

RL - Analyte reporting limit

Definitions: O

QCL - Quality control firmt

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Cilent:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-014

Client Sample ID; TV/4-12

Report Date: 03/23/07

Collection Date: 02/28/07 11:10

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	OCT NCD	Method	Analysis Date / By
MAJOR IONS							
Chloride	16	mg/L		1		A4503-Ci B	03/96/07 13:21 / ji
Nitrogen, Nitrate+Ni;rite es N	1.5	mg/L		Q . 1		E353.2	03/ 96/07 11:23 / iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachtoride	ND	ug/L		1.0		5W82603	03/06/07 (03:01 / dkh
Chleroform	NC	ug/l.		1.0		SW02608	03/C6/07 03:01 / dkh
Chloramethane	ND	ug/L		1.0		\$10/82603	03/06/07 03:01 / dkh
Mathylene chloride	ND	Og/L		1.0		SW/82608	03/06/07 03:01 / dkh
Surr: 1,2-D chlorobenzere-d4	131	%REC			80-120	SW82609	03/06/07 93:01 / dkh
Surr Dibromofluoromethane	100	%REC			70-130	SW8260B	03/06/07 03:01 / dkm
Surr: p-Bromoffucrobenzane	98.0	%REC			80-120	SW8760B	02/06/07 03:01 / dkg
Sum: Toluen e-dĉ	97.0	%REC			90-120	\$W82603	03/06/07 03:01 / dkh

Report

RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MCL - Maximum contaminant level.

Client

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-015

Client Sample (D; TW4-13

Report Date: C3/23/07

Collection Date: 02/28/07 11:25

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units _	Qualiflers	RL	DGF WGF\	Mathod	Analysis Date / By
MAJOR IONS							
Chloride	59	TIGAL		1		A4500-Ct B	03/06/07 13 22 / #
N trogen, N trate+Nitrite es N	4.0	mg/L	Э	0.2		E253.2	03/06/07 11 25 riji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachlorice	ND	ug/L		1.0		\$W8260B	03/06/07 03:40 / dkh
Chloroterm	ND	ug/L		1.0		\$W6280B	03/06/07 03:40 / dkl
Chloromethane	ND	∟ց/ L		1.0		SW8250U	03/06/07 03:40 / dki
Methylene chloride .	ND	ug.L		1.0		SW8260B	03/06/07 03:40 / dkt
Surr 1,2-Dichlorobenzano-d4	102	%REC			80-120	SW8260B	93/06/07 03:40 / dkt
Surr Dibromofluoromathane	99.0	%REC			70-130	SW8260B	03/06/07 03:40 / dlkh
Surr: p-Bramofkiotobe tzene	99.0	%REC			80-120	SVV8260B	03/06/07 03:40 / dkh
Surr Toluene-d8	97.0	%REC			60-120	SW8260B	03/06/07 03:40 / dkfr

Roport Definitions; RL - Analyte reporting limit.

QCL - Quality control firmt.

D - RL increased due to sample matrix lifterferance.

MCL - Maximum conteminant level.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-016

Client Sample ID: TW4-14

Report Date: 03/23/07

Collection Date: 02/28/07 11:37

DateReceived: 08/02/07

Matrix: Aqueous

Analyses	Result	Unite	Qualifiera	RL	MCL/	Vethod	Analysis Date / By
MAJOR IONS							
Chloride	38	mg/L		1		A4500-C/ B	03/06/07 13:23 / [[
Nitrogen, Nitrato+Nitrite as N	2.3	mg/L		9.1		E053.2	03/06/07 11:35 / ljt
VOLATILE DRGANIC COMPOUNDS							
Carbon tetrachlorice	ND	Lg/L		1.0		SW82G0B	03/06/37 04:19 / dkh
Chloratorm	ND	⊔g/L		1.0		SW8260B	03/05/37 04:19 / ctkh
Chidromethene	ND	սց:Ա.		1.0		SW0260B	03/06/07 04:19 / dkh
Methylana chlorida	ND	եց/L		1.0		SW8260B	03/06/07 04:19 / clkh
Surr: 1,2-Dichlerobenzene-d4	100	%REC			80-120	\$W8260B	03/05/07 04:19 / dkh
Surr: Dibromotluoromethane	0.89	%REC			70-130	SW8260B	03/03/07 04:19 / dkn
Suir, p-Bromofhiorobenzene	99.0	%REC			80-120	SW0260B	03/08/07 04:19 / dkh
Surr: Tolunne d8	98.0	%REC			80-120	5\ 4 8263 B	03/08/07 04:19 / cikh

Report

HL - Analyte reporting limit. Defin(Lions: QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-017

Client Sample ID: TW4-15

Report Date: C3/23/07

Collection Date: 02/28/07 14:22

DateReceived: D3/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualiflers	RL	OCT.	Method	Analysis Date / Dy
MAJOR IONS					~	· · · · · · · · · · · · · · · · · · ·	
Chloride	56	mg/L		1		A4500-CI R	03/06/07 13:24 / j1
Nitrogen, N trate+Nitrite as N	0.5	mg/L		0.1		E353.2	03/06/07 11:38 / ij.
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	eg/L		1.0		SW82608	93/07/07 99:14 / dkh
Chlorotorm	570	ug/L	D	50		\$W8260R	03/06/07 21:23 / dkh
Chloromethane	ND	ug/L		1.0		\$W8260B	03/07/07 09:14 / dkh
Methylene chloride	5.5	Lg/L		1.0		SW8260B	03/07/07 09:14 / dkh
Surr 1,2-Dichlerobenzene-d4	101	%REC			£0-120	SW8250B	03/07/07 09:14 / dkh
Surr: Dibromoti Joromethane	107	%REC			70-130	SW82608	03/07/07 09:14 / dkh
Surr: p-Bromofluorobenzene	96.0	%REC			80-120	SW8260B	03/07/07 09:14 / JAN
Surr Toluene-18	95.D	%REC			80-120	SW82608	03/07/07 09:14 7 dkh

Report

RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix Interference.

MCL - Maximum conteminant level

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-018

Citent Sample (D: TW4-15)

Report Date: 03/23/07

Collection Date: 02/28/07 12:46

OpteReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	OCT NCT	Method	Analysis Date / By
MAJOR IONS							
Chloride	79	mg/L		1		A4500-C1 B	03/06/07 13:25 / ii
Aitrogen, Nitrale+Nifr≰e as N	12.3	m g /L	D	0.3		E 353.2	03/06/07 11:40 / IJI
VOLATILE ORGANIC COMPOUNDS							
Carbon tefrachloride	ND	_g/L		1.5		SW8260B	03/07/07 05:16 / dkh
Chloraform	8.7	שֿעםעל.		1.0		SW2260B	03/07/07 05:16 / dkh
Chloromethane ,	ND	ug/L		1.0		5W8ZBDH	03/07/07 05:16 / dkh
Methylene chloride	6.6	ug/L		1.0		S:W8260B	03/07/07 05.18 / dkh
Surr; 1,2-Dichlorobenzene-d4	103	%4F.C			80-120	SW8260B	03/07/07 05:15 / dkh
Surr. Dioromofluoramethane	198	%REC			70-130	SW8260B	03/07/07 05:16 / dkh
Surr: p-Bromofiuorobenzene	99.0	MREC			60-120	8W5260B	03/07/07 06:16 / dkh
Surr. Toluene-d8	0.68	%REC			80-120	SW3260D	03/07/07 05:15 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Minos

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-019

Client Sample ID: TW4-17

Report Date: 03/23/37

Collection Date: 02/28/07 11:53

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Rosult	Units	Qualifiers	RL	OCL OCL	Method	Analysia Date / By
MAJOR IONS							
Chloride	32	mg/L		1		A4500-C/ B	<i>03/03/</i> 57 13:26 / ₁ 1
Nitrogen, Nitrale+N.trile as N	ND	mg/L		0.1		E353,2	03/05/07 11:43 / [[
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		5W8260B	03/07/07 05:57 / dkh
Chloroform	ND	μg/L		1.0		SW8260B	03/07/07 05:57 / dkh
Chloromethane	ND	ug/_		1.0		SW9260B	03/07/07 05:57 / dkh
Methylano chloride	ND	υg/L		1.0		SW426CB	03/07/07 05:57 / dkp
Surr: 1,7-Dichiprobenzene-d4	102	%REC			80-120	SW9260B	03/07/07 05:57 / akh
Surr: Dioremofluoromathana	104	%REC			70-130	SW9260B	03/07/07 05:57 / dkn
Surc: p-Bromofluoraber zene	97.D	%REC			80-12C	8W8280B	0.3/07/07 05:57 / dkh
Şurr: Toluane-dā	99.0	%REC			₿ D-120	SANR590.R	03/37/07 05:57 / dkh

HL - Ar s'yle reporting limit. Definitions: QCL - Quality postro timit.

MCL - Max mum contaminent level. ND - Not detected at the reporting limit.

Client:

Denison Mines

Project:

1s: Quarter Chloroform Sampling Event

Lab ID:

C07030109-020

Client Sample ID: 1W4-18

Report Date: 03/23/07

Collection Date: 02/28/07 12:34

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Unita	Qualifiers	RL	GCF WCF1	Method	Analysis Dato / By
MAJOR IONS		•					
Chloridu	30	mg/L		1		A4500-Cf B	03/06/07 13:32 / /I
Nitrogen, Nitrote• Nitrite as N	5.1	ring/L	D	0.2		E353.2	03/06/07 11:45/1jl
VOLATILE ORGANIC COMPOUNDS							
Gerbon totrachlorida	NO	Jg/L		1.0		SW82608	03/07/07 09 53 f dkh
Chloreform	2.2	ugiL		1.0		SW62608	03/07/07 09:53 / dkh
Chloremethene	ND	Jg/L		1.C		SW8260B	03/07/07 09 53 / dkm
Methylene chloride	NO	ug/L		1.0		SW9260B	93/07/07 09.53 / dkh
Sum: 1,2-Dichlorober zene-d4	102	%REC			60-120	SW8260FI	03/07/07 09 53 / clkh
Surf: D bromoflucromethane	102	W REC			/0-130	SW8260B	03/07/07 09.53 / dkn
Surr: p-Bromofluorobenzena	100	%REC			80-120	SW6200B	03/07/07 09:50 / dkh
Surr: Toluens-d8	98.0	%REC			60-120	SW8260B	93/07/07 09 53 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Max mum contaminent leve".

NO - Not dejected at the reporting Whit.

Client

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-021

Client Sample ID: TW4-19

Report Date: 03/23/07

Collection Date: C2/28/07 16:35

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Rosult	Units	Qualifiers	RL.	MCF.	Method	Analysis Date / By
MAJOR JONS							•
Chloride	133	mg/L		1		A4500-Cf B	03/Q6/07 13:34 / jl
Nitrogen, Nitrate+Nitrite as N	4.0	rng/L		9.1		E353.2	03/08/07 11:55 / (j)
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachioride	1.3	ugo/L		1.0		SW8260B	03/07/07 10 32 / dkh
Chloratorm	1230	ug/L	Ð	50		SW8260B	03/05/07 22:02 / dkh
Chicromathane	ND	ug/L		1.0		SW8260D	03/07/07 10:32 / dkh
Methylene chloride	ND	ug/L		1.0		\$V\\0260B	03/07/07 10:32 / dkh
Surr: 1,2-Dichlarobenzane-u4	101	MREC			60-120	SW8260B	03/07/07 10:32 / dkh
Surr Dibromotluoromathane	103	%REC			70-130	SW8260B	03/07/07 10.32 / dkh
Surr. p-Bromofidorobenzene	9B.D	%REC			80-120	SW82608	C3/07/07 10:32 / dkh
Surc Taluene dB	99.C	%REC			80-120	SWAZAOR	03/07/07 10:89 / ረ ሱስ

Report

RL - Analyte reporting limit.

Definitions:

QCL - Quality control limit.

MC'L - Maximum contaminant level ND - Not detected at the reporting limit.

D - RL increased due to sample matrix interference,

Track#C0703C109 Fage

23

Client:

Decison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-022

Client Sample ID: TW4-20

Report Date: 03/23/07

Collection Date: 02/28/07 16:23

DateReceived: 03/02/07

Matrix: Aqueous

Analysės	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	124	mg/L		1		A450Q-CI 3	03/08/07 13:35 / jt
Nitrogen, Nitrate+N.trite as N	4 2	mg/L		D. 1		E353.2	03/08/07 11:57 / iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	31	ug/L		1,0		S\48260B	03/07/07 06:37 / dkh
Chloraform	4400	ug/L	O	50		8W8263B	03/08/07 15:38 / dkh
Chloromethane	ND	ψg/L		1.0		SW8260F	03/07/07 09:37 / clkin
Methylane chlaride	11	ug/L		1,0		SW8260B	03/07/07 08:37 / dkh
Surr. 1,2-Eichlorobenzens-d4	102	%REC			80-120	SW0269 B	03/07/07 05:37 / dkh
Sum Dibromofluoromethana	100	WHEC			70-130	SW8260B	03/07/07 05:37 / dkh
Surr. p-Bromofluorobenzene	99.0	%REC			83-120	SW3260D	03/07/07 05:37 / okh
Surr. Teluone-d8	98.0	%REC			80-120	SW826CB	03/07/07 08:37 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control fimit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

Client Sample (D: TW4-21

C07030109-023

Report Date: 03/23/07

Collection Date: 02/28/07 14:10

DateReceived: 03/02/07

Matrix: Aqueous

Апајувев	Result	Unite	Qualitiers	RL	GCT WCM	Method	Analysis Date / By
MAJOR IONS			-	-		•	-
Chloride	306	ութ ե		1		A4500-C16	C3/06/07 13:36 / jl
Nitrogen, Nitrate - Nitr te as N	87	mg-L	Þ	0.2		E353.7	03/06/37 12:00 / ljl
VOLATILE ORGANIC COMPOUNDS							
Garbon tetrachionide	1.8	ug/L		1.0		SW3260B	03/07/07 07:17 / dkt
Chloroform	160	ug/L	D	5.0		SW826CB	83/08/07 16:17 / dk)
Chloromethano	ND	uq/_		10		5YV9200B	03/07/07 07:17 / dkl
Methylene chloride	ND	ug/L		10		5W8260B	03/07/07 07:17 / dkt
Surr: 1,2-Dichloropenzene-d4	101	%REC			8C-12C	SW2260B	03/07/07 07:17 / dkt
Surr. Dipremofluoromethane	108	%REG			70-130	SW8260B	03/07/07 07:17 / dkt
Surr: p Bromofluorobenzare	98.0	MREC			8C-120	SW8260B	08/07/07 07:17 / dkt
Surr: Toluene-d8	100	%R EC			80-120	SW8260B	03/07/07 07.17 / clki

Report Definitions: RL - Analyte reporting first.

DCL - Quality control limit.

D . Rig increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

1st Quarter Chioroform Sampling Event

Lab ID:

C07030109-024

Client Sample ID: TW4 22

Report Dato: 03/23/07

Collection Date: 02/28/07 14:34

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/	Method	Analysis Date / By
MAJOR IONS							
Chloride .	347	mg/L		1		74500 CI 6	03/06/07 13:37 / jf
Nitrogen, Nitrate+Nitrite as N	20.9	ածչ	D	03		F353.2	03/06/07 12:03 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachlor de	ND	μg/L		1.0		SW8260B	03/07/07 11:11 / dkh
Chloroform	440	ug/L	ם	10		5WB260B	03/07/07 03:17 / dkh
Chloromethana	ND	υg/L		t.D		SY/0260D	03/07/07 11:11 / dkh
Mathylena chlorida	NO	ug/L		1.0		SV/8260B	03/07/ 07 1:11 / dkh
Surr: 1,2-Dichiorobenzene-d4	102	%RFC			80-120	SW2260B	D3/97/07 11:11 / dkh
Surr: Dibromofluoromethane	102	%REC			70-13C	\$W8260B	03/07/07 11.11 / alkh
Surr: p-Bromof uorchenzene	101	MREC			80-120	SWEZ60B	03/07/07 11:11 / dkh
Surr. Toluene-d8	97.0	%REC			80-120	SV/8260FI	03/97/07 11:11 / dkh

Report Definitions: RL - Analyte reporting timit.

QCL - Quality control I mit

□ - RL increased due to sample matrix interference.

MCL - Max mum contaminant level.

Cliant:

Denison Mines

Project:

Lab ID:

C07030109-025

Client Sample ID: 17/V4-60

1st Quarter Chloroform Sampling Event

Report Date: 03/23/07

Collection Date: 02/28/07 13:33

DateReceived: 03/02/07

Matrix: Aqueous

Anatyses	Result	Units	Qualiflers	RL	MCL/ QCL	Mathod	Analysis Pate / By
MAJOR IONS					.,.	·	
Chloride	ND	mg/L		1		A4500-CI B	03/06/07 13:41 / J/
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		Q.1		E353.2	03/06/07 12:05 / lj)
VOLATILE ORGANIC COMPOUNDS							
Caroon tegachloxide	ΚĐ	ug/L		1,0		SW8260B	03/07/07 07:57 / dkh
Chloroform	25	ug/L		1.0		SW 250B	03/07/07 07:57 / dkh
Chloromethare	ND	ug/L		1.0		SW826019	03/37/07 07:57 / dkh
Mothylene chloride	ND	ug/L		1.0		SW62600	03/07/07 07:57 / dkh
Surr: 1,2-Dichlorobenzene-d4	102	%REC			80-120	SW6260B	03/07/07 07:57 i dkh
Surr: Dibromof uoromathane	104	%REC			70-130	SW6260B	93/07/07 07:57 / dkh
Surr: p-Bromofitérobanzene	190	WREC			80-120	SYM8260B	03/07/07 07:57 / dkh
Surr: Talvene-d5	98 Ó	%REC			80-120	SW6260B	03/37/07 07:577 dkh

Repart

RL - Analyte reporting limit.

Definitions: QCL - Quality control limit

MGL - Maximum contaminent level.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab iD: 🕟

C07030109-026

Client Sample ID: TW4-63

Report Date: 03/23/07

Collection Date: 02/28/07 13.48

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualiffers	RL	OCT WCT	Method	Analysis Date / By
MAJOR IONS						• • • • • • • • • • • • • • • • • • •	
Chloride .	No	mg/L		1		A4500-CI R	03/06/07 13:43 / jt
Nitrogen, N'trate+Nitrite as N	СИ	™gÆ		G.1		E353.2	03/06/07 12:15 / lj:
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachioride	ND	ug/L		1.0		\$W0260B	- 03/07/97 11:50 / dkh
Chleroform	20	ug/L		1.0		SW82600	03/07/07 11:50 / dkh
Chlaromethane	ND	սցեՆ		1.0		SW8260B	03/07/07 11:50 / dkh
Methylena chloride	No	ug/L		1.0		SW8260B	03/07/07 11:50 / dkh
Surr 1,2-Dichlorobenzene-d4	102	%REC			80-120	SW8250B	03/07/07 11:50 / dkh
Surr; Dibromeffuoromethane	102	%REC			70-130	SW82609	93/07/07 11:50 / dkh
Surr: p-Bramofluorobanzene	98.C	%REC			80-120	SW8260B	33/07/07 11.50 / dkh
Surn Toluena-18	9 0.0	%REC			80-120	SVV8260U	03/07/07 11:50 / dkh

Report Definitions: OC: Quality control limit.

RL - Analyte reporting limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-027

Client Sample ID: TW4-65

Report Date: 03/23/07

Collection Date: 02/25/07 16:23

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	eliaU	Qualifiers	RL	MCL MCL	Method	Analysis Date / By			
MAJOR IONS										
Chlorids	139	ოქქ		1		A4500-CI B	03/08/07 13:44 / JI			
Nitrogen, Nitrate+Nitrite as N	4.3	mg/L		0.1		E353 2	03/06/07 12:18 / ljt			
VOLATILE ORGANIC COMPOUNDS										
Sarcon tetrachloride	6.8	ug/L		1.0		SW6260F	03/07/07 12:29 / dki:			
Chloroform	16000	ug/L	Ð	250		SW8250B	03/06/07 19:27 / dkh			
Chloromethare	ND	ug/L		1.0		SW8250B	03/07/07 12:29 / dkh			
Methylene chloride	1.0	ug/L		1.0		SW6260B	03/07/07 12:29 / d.kh			
Surr: 1,2-D:chlorobenzene-d4	101	%REC			80-120	SWEZEOD	03/07/07 12:29 / dkh			
Surr: Dibromofluoromethane	101	%REC			70-130	SW0260B	03/07/07 12:29 / dkh			
Surr. p Bromofluorobenzene	98.0	%REC			00-120	SW82603	03/07/07 12:29 / dkh			
Sun. To pere-d8	98.9	%REC			80-120	\$W8260B	03/07/07 12:29 / dkh			

Report
Definitions:

RL - Analyte reporting limit.

itions: QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Cliant:

Denison Mines

Project

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-028

Client Sample ID: TW4-70

Report Date: 03/23/07

Collection Date: 02/28/07 13:58

DateReceived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	OCT WCF1	Method	Analysis Date / By
MAJOR IONS					-		
Chloride	55	mp.L		1		A4500-CI B	03/06/07 13:45 / j[
Nitrogen, Nitrate+Nitr te as N	8 1	mg/L	D	0.2		E353.2	03/05/07 12:20 / IJI
VOLATILE ORGANIC COMPOUNDS							
Carbon letrach oride	ND	ug/L		1.0		SW8260B	03/07/07 08:36 / dkh
Chloraform	41	ug/L		1.0		SW8260D	03/07/07 08:36 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	03/07/07 08:36 / dkh
Mothyfene chlaride	ND	սց/Լ		1.0		SW8260B	03/07/07 08:36 / dkh
Surr. 1,2-Dichjorobenzens-d4	101	%REC			80-120	SVV8263B	03/07/07 08:36 / dkh
Surc Dibromofluoromethane	102	%REG			70:130	SW8260B	03/07/07 08:36 / dikh
Surr. p-Bromofulorobenzene	98.0	%REC			80-120	SW8260B	03/07/07 08:36 / dkh
Surn Tollæne-c8	97.0	"KREC			89-120	SW8260B	03/07/07 08:36 / dkh

Report Definitions: RL - Analyte reporting limit.

QGL - Quality control Emit.

Di- RL increased due to sample matrix interference.

MGL - Maximum contaminant level

Client:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Lab ID:

C07030109-029

Client Sample (D: Trip Blank

Report Date: 03/23/07

Collection Date: 02/28/07

DateRecoived: 03/02/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	NO	ug/L		1.0		\$W6260B	03/08/07 17:30 / dkh
Ghloroform	ND	μg/L		1.0		SW8260B	03/96/07 17:30 / dkh
Chloromethane	ND	ug/L		1.0		5W6250FI	03/38/07 17:30 / clkh
Mathylene chloride	NII	սց/Լ		1.0		SW6250B	03/36/07 17:30 / dkh
Surr: 1,2-D chlorobenzene-d4	101	%REC			90-120	SW82500	03/06/07 17:30 / dkh
Sun: Dibromof.uoremethene	99.0	%REC			70-130	SW82500	03/06/07 17:30 / dkh
Surr; p-Bromofluombenzene	99.0	%REC			80-120	SW0280D	03/08/07 17:30 / dkh
Surr; Tolueno-dS	98.0	%REC			80-120	SV/8250B	03/06/07 17:30 / dkh

RL - Analyte reporting limit. Definitions: QCL - Quality control limit.

MCI, - Maximum conteminant level. ND - Not detected at the reporting limit.

Client: Den son Mines

Report Date: 03/23/07

Project: 1st Quarter Chloroform Sampling Event

Work Order: C07030109

Analyte		Result	Units	RL	%REC	Low Limit	High Umit	RPD I	RPDLimit	Qual
Mathod:	A4500-CI B	<u> </u>	سر سرو رسوس . ب	<u></u>	,			Batch:	070306A-C	L-TTR-W
Sample ID:	MBLK9-070306A	Methoc Blank				Run: TITR/	ATION_070386A		03/06	/07 11:19
Chloride		ND	rg/L	0.4			_			
Sample ID:	C07030084-013BMS	Sample Matrix	Spike			Run: TITR/	ATION_070306A		03/06	/07 12:48
Chleride		306	mg/L	1.0	100	80	110			
Sample ID:	C37030084-013BMSD	Sample Matrix	Spike Dupilcate			Run: TITE	ATION_070306A		03/06	/07 12:48
Chicride		31 1	mg/L	1.0	101	90	110	0.7	10	
Sample IO:	LCS35-070306A	Laboratory Cor	ntrol Sample			Run: TITE	ATION_070306A		03/06	/07 12:50
Chloride		3530	rrg/L	1.0	99	90	110			
Sample ID:	MBLK36-070306A	Method Blank				Run: TITR/	ATION_070306A		03/06	/07 12:50
Chluride		ND.	mg/L	0.4						
Sample ID:	C07030109-0098MS	Sample Matrix	Spike			Run: TITE	ATION_070306A		03/06	/07 13:15
Chloride		118	mg/L	1.0	ðë	90	110			
Sample ID:	C07030109-009EMSD	Sample Matrix	Spike Duplicate			Run: TITAV	ATION_0703C6A		03/06	/07 13:16
Chiodda		11\$	rrg/L	1.0	101	90	110	1.2	10	
Sample ID:	C07030109-019DMS	Sample Matrix	Spike			Run: TITRA	ATION 07036BA		03/08	/07 13:27
Chloride		101	mg/L	1.0	97	90	110			
Sample ID:	C07030109-019BMSD	Sample Matrix	Spike Duplicate			Run: TITEV	ATION_070366A		03/06	/07 13:28
Chloride		104	rrg!L	1.0	101	90	110	3.4	10	

Qualifiers:

R_ - Analyte reporting limit.

Client: Denison Mines

Report Date: 63/23/07

Project: 1st Quarter Chloroform Sampling Event

Work Order: C07030109

Analyte	Result	Units		%REC	Low Limit	High Limit	RPD RPDI	Limit Qual
Mothod: E353.2		7				Bá	tch: A2007 0	3-06_1_NO3_01
Sample ID: MBLK-1	Method Blank				Run: TECH	-NICON_370306	A.	03/06/07 10:33
Nitrogen, Nitrato+Nitrito ps N	NO	mg/L	6.93					
Sample (D: LCS-2	Laboratory Cor	rtroi Sample			Run: TEC	HNICON_E70305	A	03/06/07 10:35
Nitrogeo, Nitrate: Nitrità és N	2 54	mg/L	0.10	100	90	110		
Sample ID: C07030109-005AMS	Sample Matrix	Spike			Run; TECH	HNICON_070306	4	03/06/07 10:50
Nitrogen, N trate+Nitrite se N	5 00	mg/L	0.10	101	90	110		
Sample ID: C07030109-006AMSD	Şample Matrix	Spike Duplicate			Run: TECH	-NICON_070306/	4	03/06/07 10:53
Nitrogen, Nitrate+Nitrite as N	5.13	mg/L	0.10	103	90	110	3.0	10
Sample ID: C07030109-014AMS	Sample Matrix	Spike			Run: TECH	HNICON_070308/	4	03/06/07 11:28
N sa etirli'A+etatrili negoriiN	3 42	mg/L	0.10	97	90	110		
Sample ID: C07030109-014AMSD	Sample Metrix	Spike Duplicate			Hun: 1606	RNICON_070305	۸.	03/06/07 11:30
N trogen, Nitrate+Nitrite as N	3.44	mg/L	0.10	98	90	110	Ĉ.B	10
Sample ID: MBLK-32	Method Blank				Run: TECH	-NICON_070308/	4	03/06/07 11:50
Nitrogen, Altrato+Nitrite as N	ND	mg/L	2,03					
Sample ID: LCS-33	Laboratory Cor	ntroi Sample			Run; TEC	HNICON_070305/	4	03/06/07 11:53
Nitroger, Nitrate+Nitrite as N	2.55	rng/L	0.10	100	90	† 10		
Sample ID: C07030109-025AMS	Samole Matrix	Spike			Run: TECH	:NICON_070306/	4	03/06/07 12:08
Nitrogen, Nitrate+Nitrile se N	1.97	mg/L	0,10	9 9	90	110		
Sample ID: C07030109-025AMSD	Sample Matrix	Spika Duplicate			Run: TECH	NICON_370306/	4.	03/06/07 12:10
Nitrogen, Nitraje+Nitrito as N	1.96	mg/L	0.10	98	90	110	C.5	10

Qualifiers:

RL - Analyte reporțir gillmit.

Client: Denison Mines

Report Date: 03/23/07

Project: 1st Quarter Chloroform Sampling Event

Work Order: C07030109

Analyte	Result	Unils	RL	%REC	Low Limit	High Limit	RPD	RPÖLIMİL	Qual
Method: SW82609								Bate	h: H80429
Sample ID: 05-Mar-07_LCS_3	Laboratory Co	rtrol Sample			Run: GCM	87_07030\$A		03/05	1/0 7 13:2 1
Carbon tetrachloride	4.2	μg/L	1.0	83	70	130			
Chlaroform	8.4	ug/L	1.0	93	70	130			
Chloromethane	4.3	ug/L	1.0	86	70	130			
Methylene chleride	5.0	ugr/L	1.0	100	70	130			
Surr: 1,2 Dichlorobenzene d4		v	1,0	89	90	120			
Surr: Dibromofluoromethane			1.0	94	70	130			
Surr: p-Bromofluorabanzane			1.0	tCo	80	130			
Sun: Toluene-d8			1.0	88	80	120			
Sample ID: 05-Mar-67_MBLK_6	Method Blank				Run: GCM	S2_070335A		03/05	5/07 15:18
Carbon tetrachieride	ND	ug/L	0.5						
Chloroform	ND	ug/L	C.5						
Chloromethane	ND	ug/L	C.5						
Methylene chlande	ND	ug/L	Ç.5						
Serr: 1,2-Dichlorobenzen e d 4				100	90	120			
Surr: Dioremofluoromethane				92	70	130			
Surr: p-Bromofluorobenzone				100	80	120			
Sum Toluene-68				98	90	120			
Sample ID: C07030109-012GMS	Sample Metrix	: Spika			Run: GCM	S2_070305A		93/06	9/07 12:08
Carbon tetrachlorido	180	սց.Է.	10	91	70	130			
Chiloroform	670	ug/L	10	éc	70	130			
Surr. 1,2-Dichlorabenzene-d4		_	1.0	102	80	120			
Surr. Dibromoftuoromethane			1.0	98	70	130			
Surr, p-Bromofluorobenzene			1.0	102	80	120			
Surr. Toluene-c8			1.0	96	80	120			
Sample ID: C07030109-012CMSD	Sample Matib	s Spike Duplicate			Run GCM	IS2_070306A		03/06	₩07 12:47
Carbon tetrach orige	180	ug/L	10	90	70	130	0.9	20	
Chlarefo:m	690	ug.'L	10	79	70	130	2.2	20	
Surr; 1 2-Dichlerobenzene-d4			1.0	160	AO	120	0.0	10	
Surr: Dibramafluoromethane			1.0	56	70	130	0.0	10	
Sum: p-Bromofluoregenzene			1.0	88	60	120	0.0	10	
Sum: Toluene-d8			1.0	98	20	120	0.0	10	

Qualifiers:

RL - Analyte reporting limit

NO - Not detected at the reporting limit.

Client; Denison Mines

Project: 1st Quarter Chloroform Sampling Event

Report Date: 03/23/07

Work Order: C07030109

Analyte	Result	Unite	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B							-	Batch	v: IR80550
Sample ID: 06-Mar-07_LCS_1	Laboratory Co	ntrol Sample			Run: GCM	\$2_07000BA		03/06	V07 14:54
Carbon Letrachloride	5.4	ug/L	1.0	107	70	190			
Chlesglorm	5.6	nEt,r	1.0	110	73	130			
Chioromethane	5.C	ug/L	100	101	73	130			
Methylene chloride	5.6	ug/L	1.0	115	73	130			
Surr: 1.2-Dichlorobenzene-d4		-	10	99	83	120			
Surc Olbromeflucromethans			10	99	. 73	130			
Sur:: p-Bromofluorobenzene			10	100	80	130			
Surr: Tolueno-d9			1.0	99	CB	120			
Sample ID: 06-Mar-07_MBLK_3	Method Blank				Run: GGM:	S2_070306A		93/06	/07 16:12
Carbon (etrachigside	ND	wg/L	0.5						
Chiorafarm	ND	ug/L	0.5						
Chloromethane	ND	ug/L	0.5						
Mathylene chlorida	ПИ	ug/L	0.5						
Surr: 1,2 Dichlorobenzene-d4				99	80	120			
Surr: Dibromoftuoromethane				96	70	130			
Surr: p-Bromafluarobenzene				98	60	120			
Surr. Toluenc-d8				98	80	120			
Sample ID: C07030108-020CMS	Sample Matrix	: Spike			Run: GCM:	A80E070_S		03/0/	/07 14:26
Carbon tetrachloride	190	ug/L	10	97	70	130			
Chloroform	220	ug/_	10	108	70	130			
Surr: 1,2-Dich arabenzene-d4			1.0	102	80	120			
Surr: Dibramoflyonomether e			1.0	99	70	.130			
Surr: p-Bromofluorobenzene			1.0	102	60	120			
Surr: Toluene-d6			1.0	99	08	120			
Sample ID: C07030109-020CMSD	Sample Matrix	Spike Duplicate			Run: GCMS	S2_070306A		03/07/	/07 15:D5
Carbon tetrachloride	210	ug/L	10	106	70	130	6.7	20	
Chloroform	240	ug/L	tű	118	70	130	9.2	20	
Surr: 1 2-Dichlorobenzene d4			1.0	102	80	120	0.0	10	
Surr: Dibramofluoromethane			1.0	80	70	130	0.0	10	
Surr: p-Bromofluoroberzene			10	103	60	120	0.0	10	
Sum: Taluena-cB			1.0	98	80	120	0.0	10	

Qualifiers:

RL - Analyte reporting timit.

Chain of Custody and Analytical Request Record
PLEASE PRINT, provide as much information as possible. Refer to comesponding notes on reverse side.

ENERGY

₽

	· ·		=-	rioject Naπe, I*MS #, Permit #, Etc.:	16.:				
La terrora	Interpolational Charmon (USA) Come for	Single file		1St Chaiter		Chlore fein	S	Samolin Event	
Heppor well Ad 34835	ර ර ර	-	Contact Name	c, Phone, Fax, E-m			Sam	for Name if Other than Contact.	
		- -	Œ			•		•	
America-Andrews	DIANGING LITER 875		9	165 (121)	i	35-678	Ġ	435-678-3221/435-678-2224	-
		•	THE PROPERTY	moice collect a l'nane fi.			<u> </u>	1350 Order #;	ELI Queta #:
	ا ج		ے	7 - T. L		1676 1677	****		
Report Required For	For POTWWWTP DW		3	1 -	P	1.55 -6 /5 94/4	_		ſ
-	Officer	1	ĊΠ	दङ्ग				Notify Ect prior to KUSH sample submittal for additional	Strong St
Special Report F	Special Report Formats - ELI must be notified prior to	2	піфін у 8 у, тейў этіў	प्रकार जिस्स				charges and scheduling	Coeler II
NELAC []	AZLA D Levol IV D		۱₩ ж е	روان الرغار الرغار		ISH	(TAT)		Receipt Terro
D(1ef			NT e Soit	7 / Y			pun		Vic. of A
EDD/EDT LI Format	mat		qmв. ъвіб <u>УУ</u>	347 V 10/2		11/5	yana Jalett		Custody Seal // 'N
SAMPLEIL	SAMPLE IDENTIFICATION Collection	Callection	i	ACI		/3	L len (Signature V
Name, Long	(Name, Encetion, Interval, etc.) Data		WATRIX	いに心		<u>-</u>	Mon		Match Eab ID
MIN'H	20407	1590	5-W	1117			-		
TW4-A	Alaskon	1550	7 · · · 5			_			N
Ttv 4-	colocic	1518	- M-S				E		0 :
F-HML	2/25/07	1603	15-w					14000	S
*TW.4.3	9 (286)	033	15-m					1	1/2
Trit.	glasto	1528	7-5	1///					いっというの出
3 Tr4-5	P. 12867	358	5. iv	11/1/					TV
3 "Tin-4-6	3.12867	1300	1 m-5						심
ैं ग्रिय-ग्र	i consele	500	S.W.			 			BO
JW4-8		131	Z.W.			<u> </u>			10
Custody	Religioushed by torns	Less Junes:	l .	Succession		╅╌╌ ┋		,	10 m 10 m
_]_			ACC 185 CA	7 Z	Second in Caralle	2	3/2/07 0936	3
				•		}		: C Mag	Baroline:
96	Sample D'sposal: Return to glient	ę	, Lab	Lab Dispuselt	E S	Sample Trans		LABORATORY USE ONLY	
ı		for Financia 1	AL Telephone In			ack I Abe.		# of fractions	

natances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. At sub-certified will be clearly noticed on your analytical report.

Visit our web site at www.energylab.com for additional Information, downloadable fee schedule, forms, & listks.

Chain of Custody and Analytical Request Record PLEASE PRINT, provide as much information as possible. Refor to corresponding notes on reverse side.

Ситрвпу Nama:

ENERGY/

1		St Xunited	Chloro P.	ر الم	
	, , , , , , , , , , , , , , , , , , ,	State of the state	. (重	VENT
Invoka Address:	7 8451	Invoice Contact & Priore #:	120 435.	LEC -8(3-251) GEE -873-251	1756
\ \frac{1}{2}		- (Purchase Order#: * ELI Que	Quote #:
Kenort Remired For POTAMMATE	C see	10. A.	435-678-2221		
	֭֭֭֓֞֞֝֟֝֟֝֟֝֟ ֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֩֞֞֞	ANDLYSIS	REQUESTED	Notify ELI prior to RUSH	_
Special Report Formats - ELI must be notified prior to sample submittel for the following:	t be notified prior to	Mainey (Mainey Mainey M		sample submittal for additional charges and scheduling	2
NECAC D AZLA D Lay		ለ ላ ፡ፀ፡	IEO	<u> </u>	01-17-10-10-10-10-10-10-10-10-10-10-10-10-10-
Other	 /	1/T 6 3(lo <u>2</u>	CF	(1) p	Receipt Termp
EDD/EDT 🗆 Format		वितासः स्थिति	AT1	unouş	
SAMPLE IDENTIFICATION	Collection Collection	Ŕ	A	, n- n í	
(Neme, Location, Interval, etc.)	Cate Time	MATRIX CHILLIAN	335	нѕл	Match Watch
1.44-9	Sassloniacs	(Z-1, / / / / Z	733	ы	Cat 10
1 WY-10	555			Law wot Ponte	٨.
I 4/4-()	200				N¢
IW 4-12	<u>ا</u>	2 2 2			Ε
TW4-13	200				sı
TV4-14	ر ا ا				A.
7W4-16	£ 25.				505050
17~4-1B	١.	S			TA
7.w/j-[]	153	2-2			ЯФ
764-18	23.4	1/1/3-5			8
	3 .	Syzalung	Rossissadoris III		7
MUST be Reinquistrater (print)	701/ 5/107	11107 (1100) Charles (Avit	/ Complete	3/407 095er	
_ـــــ) out last	ນີ່ວຸກສາເ.ຕ-
Sample Disposal;	Return to clent	. ab Discosal:	C of the Co	LABORATORY LISE ONLY	
in carpin circumstances, samples submitted to Energy Laboratories	imples submitted to Energy Lab	Aradonica lar mass by	J Sample Type:	# 1 () 1 1 1 1 1 1 1 1 1	_

nstances, samples submitted to Energy Laboratories, inc. may be subcentracted to other certified teberatories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-centract data will be clearly notated on your analysis in sport.

Visit our web site at www.energy/fab.com for additional information, downloadable fee schedule, forms, & links.

KONENE

Chain of Custody and Analytical Request Record

PLEASE PRINT, provide as fructi information as possible. Refer to corresponding notes on reverse side,

ENERGY ABORATORIES Custady Seal Y N Imact Y N Signature Y N Cooler los Recoipt Temp Lab 10 Shire & Matter **TRE** YEQTAROBA NO ELI Curate sample submittal for additional Sampler Name Hother than Contact. が る Notify ELI prior to RUSH charges and scheduling LABORATORY USE ONLY # of Indians 2/2/C2 Jommen's: 435-678-3021 (TAT) brucksing (TAT) (TAT) briuons@uT lermaM SEE ATTACHED REQUESTED Sample Type: Phone, Fax, E-mate P.75 #, Permit #, Etc. 2017.45 10 Contact Name Terligg Yesseols MATRIX nolisteg⊎⊻ zijik.S\aic& Talk\⊻ 1小 4) S Ş 4 <u>د</u> پر Number of Containers Secretary Type: A W S W B O /Sig/ Q DO S. Collection 348 434 50 S Special Report Formats - ELI must be notified prior to sample submittal for the following: Coilection Date Colsecto | Chesulosa) 3,3502 3.25(0) 358(c) 3(<u>0</u>856) Charles Charles colseles 3530 128/07 š OST C Level IV POTW/WMTP-<u>ر</u> ح Sample Disposel: SAMPLE IDENTIFICATION (Name, Locadon, Interval, etc.) DANG I DE Otbe. ととりつ In ternshional AZLA Report Mail Address: Report Required For: EDD/EDT 🔲 Format CK-77 TL/4-19 Corroany Name: MUST be 77.4-60 4-2 7-4-22 Custody Signed D~7-63 Record T wif-6.5 NELACO O ģ ack#007030+08

id certain circumstances, samples submitted to Energy Laboratories, inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your assultted report. Visit our web site at *www.energylat.com* for additional information, downloadable fee schedule, forms, & links.

ENERGY LABORATORIES, INC. • 2392 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 92602 Toll Frod 886.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

Energy Laboratories, Inc.

Sample Receipt Checklist

Cliem Name Centech	Mines .			Date 6	nd Time Received: 3/2/	2007 09:50:00
Work Order Number	C07010109			Rece'v	ed by fin	
Login completed by:	Corline Wagner	3/2/2 Date	!007 09:50 1	QJ Review	red by	T — — — — —
	_	Carrie: pame	Next Oay	<u>Air</u>	राश्चिष्ठ	l Geva
Shipping container/cod	'er in good condition?		Yes 🗹	No 🗀	Not Present	
Custody seals intact or	shipping container/cooler?		yes I√,	Ν α ι	Not Present	
Custody seals intact or	n Gampje bottles?		Yes I	No _J	No: Present 🗹	
Chain of custody prese	nt?		Yes 🔽	No ","		
Chain of custody signe	d when telinquished and receive	1 7	Yes 🕼	No]		
Chain of custody agree	s with sample labels?		Yes 📝	No □i		
Samples in proper cont	einer/bottle?		Yos 🔽	No 🗆		
Sample containers inta	ct?		Yes 🔽	No 🗀		
Sufficient sample volun	ne for indicated test?		Yes 🗹	No 🗀		
All samples received w	ithin holding time?		Yes 🗹	No □		
Container/Temp Slank	temperature ia complianos?		Yes 🗖	No 🗆	\$.0°C On Ice	
Water - VOA viels have	zero hoadspace?		Yes 😿	لاً ه۸	No VOA visis submitted	\Box
Water - pl : acceptable :	upon receipt?		Yes 🛂	No 🗀	Not App leable 🔲	
	Adju st e	d?		Checked by		
= == == ==	=======================================	====	====:		=======================================	

Contact and Corrective Action Comments: None

Date: 23-Mar-07

CLIENT:

Denison Mines

Project:

1st Quarter Chloroform Sampling Event

Sample Dalivery Group: C07030109

CASE NARRATIVE

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package. A copy of the submittal(s) has been included and tracked in the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered proporly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

SQIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

PCR ANALYSIS USING EPA 505

Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PGB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch (aboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

GRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT

eli-f - Energy Laboratories, Inc. - Idaho Falls, ID eli-g - Energy Laboratories, Inc. - Gillette, VVY

eli-h - Energy Laboratories, Inc. - Helena, MT

oft-r - Energy Laboratories, Inc. - Rapid City, SD

eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS:

USEPA: WYD0002; FL-DOH NELAC: 587641; Arizone; A20699; California: 02118CA

Oregon: WY200001; Utah: 3072350515; Virginia: G0057; Washington: C1903

ENERGY LABORATORIES, INC. - CASPER,WY certifies that certain method selections contained in this recort meet requirements as set forth by the above accrediting authorities. Some result requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

The total number of pages of this report are indicated by the page number located in the lower right corner.

Steve Landau

From:

Steve Landau [slandau@denisonmines.com]

Sent:

Friday, June 01, 2007 4:54 PM

To:

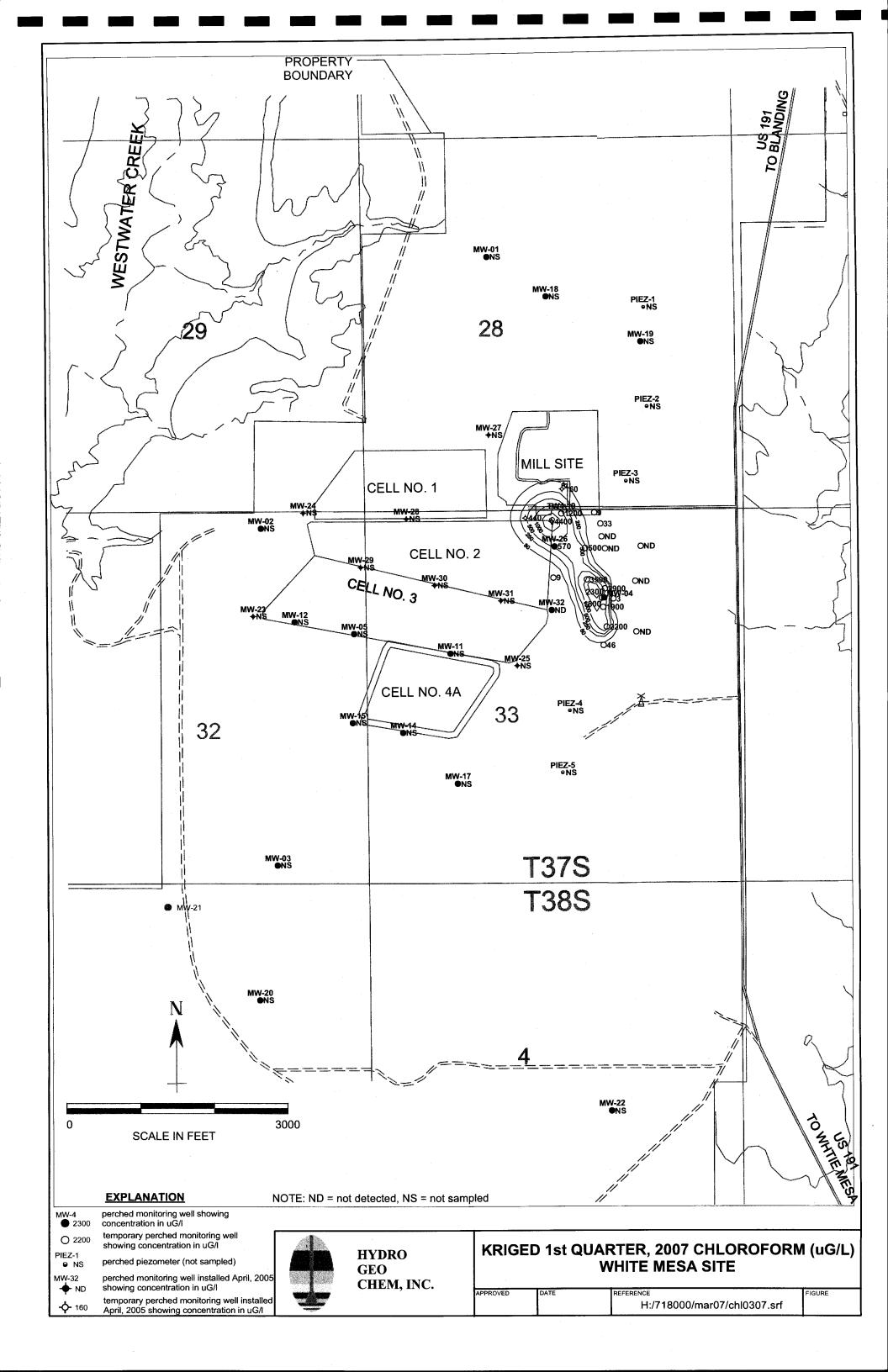
'Dane Finerfrock'

Cc:

'dfrydenlund@denisonmines.com'

Subject:

First Quarter 2007 Chloroform Report


Attachments: C07030109 1st Qtr.csv

Dear Mr. Finerfrock,

Attached to this email is an electronic copy of all laboratory results for chloroform monitoring conducted during the 1st Quarter, 2007, in Comma Separated Value (CSV) format.

Yours truly,

Steven D. Landau Manager of Environmental Affairs Denison Mines Corporation 1050 17th Street, Suite 950 Denver, CO 80265 (303) 389-4132 (303) 389-4125 Fax

Date of Sample	MW4	CHCl3 Values	Nitrate Values	Sampling Event
28-Sep-99		6200		Shallow Sample
28-Sep-99		5820		Deep Sample
28-Sep-99	· · · · · · · · · · · · · · · · · · ·	6020		Total Sample
15-Mar-00		5520		Quarterly
15-Mar-00		5430		Quarterly
2-Sep-00		5420	9.63	Quarterly
30-Nov-00		6470	9.37	Quarterly & Split Sample
29-Mar-01		4360	8.77	Quarterly
22-Jun-01		6300	9.02	Quarterly
20-Sep-01		5300	9.45	Quarterly
8-Nov-01		5200	8	UDEQ Split Sampling Event
26-Mar-02		4700	8.19	First 1/4 2002 Sample
22-May-02		4300	8.21	Quarterly
12-Sep-02		6000	8.45	UDEQ Split Sampling Event
24-Nov-02		2500	8.1	Quarterly
28-Mar-03		2000	8.3	Quarterly
30-Apr-03		3300	NA	Well Pumping Event Sample
30-May-03		3400	8.2	Well Pumping Event Sample
23-Jun-03		4300	8.2	2nd Quarter Sampling Event
30-Jul-03		3600	8.1	Well Pumping Event Sample
29-Aug-03		4100	8.4	Well Pumping Event Sample
12-Sep-03		3500	8.5	3rd Quarter Sampling Event
15-Oct-03		3800	8.1	Well Pumping Event Sample
8-Nov-03		3800	8.0	4th Quarter Sampling Event
29-Mar-04			NA	Unable to purge/sample
22-Jun-04			NA	Unable to purge/sample
17-Sep-04		3300	6.71	3rd Quarter Sampling Event
17-Nov-04		4300	7.5	4th Quarter Sampling Event
16-Mar-05		2900	6.3	1st Quarter Sampling Event
25-May-05		3170	7.1	2nd Quarter Sampling Event
31-Aug-05		3500	7.0	3rd Quarter Sampling Event
1-Dec-05		3000	7.0	4th Quarter Sampling Event
9-Mar-06		3100	6.0	1st Quarter Sampling Event
14-Jun-06		3000	6.0	2nd Quarter Sampling Event
20-Jul-06		2820	1.2	3rd Quarter Sampling Event
9-Nov-06		2830	6.4	4th Quarter Sampling Event
28-Feb-07		2300	6.3	1st Quarter Sampling Event

Date of Sample	TW4-A	CHCl3 Values	Nitrate Values	Sampling Event
12-Sep-02	·	5700	8.3	UDEQ Split Sampling Event
24-Nov-02		5000	8.5	Quarterly
28-Mar-03		4500	8.2	Quarterly
23-Jun-03		4700	8.4	2nd Quarter Sampling Event
12-Sep-03		3400	8.6	3rd Quarter Sampling Event
10-Nov-03		4500	8.4	4th Quarter Sampling Event
29-Mar-04			NA	Unable to purge/sample
22-Jun-04			NA .	Unable to purge/sample
17-Sep-04		3300	6.83	3rd Quarter Sampling Event
17-Nov-04		4100	8	4th Quarter Sampling Event
16-Mar-05		3700	7.1	1st Quarter Sampling Event
25-May-05		3740	7.8	2nd Quarter Sampling Event
31-Aug-05		3800	6.9	3rd Quarter Sampling Event
1-Dec-05		3000	6.7	4th Quarter Sampling Event
9-Mar-06		3700	5.8	1st Quarter Sampling Event
14-Jun-06		3300	7.3	2nd Quarter Sampling Event
20-Jul-06		3190	1,2	3rd Quarter Sampling Event
8-Nov-06		3370	7.1	4th Quarter Sampling Event
28-Feb-07		2500	7.1	1st Quarter Sampling Event

Date of Sample	TW4-1	CHCl3 Values	Nitrate Values	Sampling Event
28-Jun-99		1700	7.2	Quarterly
10-Nov-99		5.79		Quarterly
15-Mar-00		1100		Quarterly
10-Apr-00		1490		Grab Sample
6-Jun-00		1530		Quarterly
2-Sep-00		2320	5.58	Quarterly
30-Nov-00	-	3440	7.79	Quarterly & Split Sample
29-Mar-01		2340	7.15	Quarterly
22-Jun-01		6000	8.81	Quarterly
20-Sep-01			12.8	Quarterly
8-Nov-01		3200	12.4	UDEQ Split Sampling Event
26-Mar-02		3200	13.1	First 1/4 2002 Sample
22-May-02		2800	12.7	Quarterly
12-Sep-02		3300	12.8	UDEQ Split Sampling Event
24-Nov-02	_	3500	13.6	Quarterly
28-Mar-03		3000	12.4	Quarterly
23-Jun-03		3600	12.5	2nd Quarter Sampling Event
12-Sep-03		2700	12.5	3rd Quarter Sampling Event
8-Nov-03		3400	11.8	4th Quarter Sampling Event
29-Mar-04		3200	11	1st Quarter Sampling Event
22-Jun-04		3100	8.78	2nd Quarter Sampling Event
17-Sep-04		2800	10.8	3rd Quarter Sampling Event
17-Nov-04		3000	11.1	4th Quarter Sampling Event
16-Mar-05		2700	9.1	1st Quarter Sampling Event
25-May-05		3080	10.6	2nd Quarter Sampling Event
31-Aug-05		2900	9.8	3rd Quarter Sampling Event
1-Dec-05		2400	9.7	4th Quarter Sampling Event
9-Mar-06	·	2700	9.4	1st Quarter Sampling Event
14-Jun-06		2200	9.6	2nd Quarter Sampling Event
20-Jul-06		2840	9.2	3rd Quarter Sampling Event
8-Nov-06		2260	9.2	4th Quarter Sampling Event
28-Feb-07		1900	8.9	1st Quarter Sampling Event

Date of Sample	TW4-2	CHCl3 Values	Nitrate Values	Sampling Event
10-Nov-99		2510		Quarterly
2-Sep-00		5220		Quarterly
28-Nov-00		4220	10.7	Quarterly & Split Sample
29-Mar-01		3890	10.2	Quarterly
22-Jun-01		5500	9.67	Quarterly
20-Sep-01		4900	11.4	Quarterly
8-Nov-01	· 	5300	10.1	UDEQ Split Sampling Event
26-Mar-02		5100	9.98	First 1/4 2002 Sample
23-May-02		4700	9.78	Quarterly
12-Sep-02		6000	9.44	UDEQ Split Sampling Event
24-Nov-02		5400	10.4	Quarterly
28-Mar-03		4700	9.5	Quarterly
23-Jun-03		5100	9.6	2nd Quarter Sampling Event
12-Sep-03		3200	8.6	3rd Quarter Sampling Event
8-Nov-03		4700	9.7	4th Quarter Sampling Event
29-Mar-04	<u> </u>	4200	9.14	1st Quarter Sampling Event
22-Jun-04		4300	8.22	2nd Quarter Sampling Event
17-Sep-04		4100	8.4	3rd Quarter Sampling Event
17-Nov-04		4500	8.6	4th Quarter Sampling Event
16-Mar-05		3700	7.7	1st Quarter Sampling Event
25-May-05		3750	8.6	2nd Quarter Sampling Event
31-Aug-05		3900	8.0	3rd Quarter Sampling Event
1-Dec-05		3500	7.8	4th Quarter Sampling Event
9-Mar-06	=	3800	7.5	1st Quarter Sampling Event
14-Jun-06		3200	7.1	2nd Quarter Sampling Event
20-Jul-06		4120	7.4	3rd Quarter Sampling Event
8-Nov-06		3420	7.6	4th Quarter Sampling Event
28-Feb-07		2900	7.3	1st Quarter Sampling Event

Date of Sample	TW4-3	CHCl3 Values	Nitrate Values	Sampling Event
28-Jun-99		3500	7.6	Quarterly
29-Nov-99	-	702		Quarterly
15-Mar-00		834		Quarterly
2-Sep-00		836	1.56	Quarterly
29-Nov-00		836	1.97	Quarterly & Split Sample
27-Mar-01		347	1.85	Quarterly
21-Jun-01		390	2.61	Quarterly
20-Sep-01		300	3.06	Quarterly
7-Nov-01		170	3.6	UDEQ Split Sampling Event
26-Mar-02	-	11	3.87	First 1/4 2002 Sample
21-May-02		204	4.34	Quarterly
12-Sep-02		203	4.32	UDEQ Split Sampling Event
24-Nov-02		102	4.9	Quarterly
28-Mar-03	-	ND	4.6	Quarterly
23-Jun-03		ND	4.8	2nd Quarter Sampling Event
12-Sep-03		DN	4.3	3rd Quarter Sampling Event
8-Nov-03		ND	4.8	4th Quarter Sampling Event
29-Mar-04		ND	4.48	1st Quarter Sampling Event
22-Jun-04		ND	3.68	2nd Quarter Sampling Event
17-Sep-04		ND	3.88	3rd Quarter Sampling Event
17-Nov-04		ND	4.1	4th Quarter Sampling Event
16-Mar-05		ND	3.5	1st Quarter Sampling Event
25-May-05	,	ND	3.7	2nd Quarter Sampling Event
31-Aug-05		ND	3.5	3rd Quarter Sampling Event
1-Dec-05		ND	3.3	4th Quarter Sampling Event
9-Mar-06		ND	3.3	1st Quarter Sampling Event
14-Jun-06		ND	3.2	2nd Quarter Sampling Event
20-Jul-06		ND	2.9	3rd Quarter Sampling Event
8-Nov-06		ND	1.5	4th Quarter Sampling Event
28-Feb-07		ND	3.1	1st Quarter Sampling Event

Date of Sample	TW4-4	CHCl3 Values	Nitrate Values	Sampling Event
6-Jun-00		ND		Initial
2-Sep-00		ND		Quarterly
28-Nov-00		3.85	1.02	Quarterly & Split Sample
28-Mar-01		2260	14.5	Quarterly
20-Jun-01		3100	14	Quarterly
20-Sep-01		3200	14.8	Quarterly
8-Nov-01		2900	15	UDEQ Split Sampling Event
26-Mar-02		3400	13.2	First 1/4 2002 Sample
22-May-02		3200	13.4	Quarterly
12-Sep-02		4000	12.6	UDEQ Split Sampling Event
24-Nov-02		3800	13.4	Quarterly
28-Mar-03		3300	12.8	Quarterly
23-Jun-03		3600	12.3	2nd Quarter Sampling Event
12-Sep-03		2900	12.3	3rd Quarter Sampling Event
8-Nov-03		3500	12.2	4th Quarter Sampling Event
29-Mar-04		3200	12.1	1st Quarter Sampling Event
22-Jun-04		3500	11.1	2nd Quarter Sampling Event
17-Sep-04		3100	10.8	3rd Quarter Sampling Event
17-Nov-04		3600	11.6	4th Quarter Sampling Event
16-Mar-05		3100	10	1st Quarter Sampling Event
25-May-05		2400	11.3	2nd Quarter Sampling Event
31-Aug-05		3200	9.9	3rd Quarter Sampling Event
1-Dec-05		2800	10.2	4th Quarter Sampling Event
9-Mar-06		2900	9.5	1st Quarter Sampling Event
14-Jun-06		2600	8.6	2nd Quarter Sampling Event
20-Jul-06		2850	9.7	3rd Quarter Sampling Event
8-Nov-06		2670	10.1	4th Quarter Sampling Event
28-Feb-07		2200	9	1st Quarter Sampling Event

Date of Sample	TW4-6	CHCl3 Values	Nitrate Values	Sampling Event
6-Jun-00	*****	ND		Initial
2-Sep-00		ND		Quarterly
28-Nov-00		ND	ND	Quarterly & Split Sample
26-Mar-01		ND	.13	Quarterly
20-Jun-01		ND	ND	Quarterly
20-Sep-01		3.6	ND	Quarterly
7-Nov-01		ND	ND	UDEQ Split Sampling Event
26-Mar-02		ND	ND	First 1/4 2002 Sample
21-May-02		ND	ND	Quarterly
12-Sep-02		ND	ND	UDEQ Split Sampling Event
24-Nov-02		ND	ND	Quarterly
28-Mar-03		ND	0.1	Quarterly
23-Jun-03		ND	ND	2nd Quarter Sampling Event
12-Sep-03		ND	ND	3rd Quarter Sampling Event
8-Nov-03		ND	ND	4th Quarter Sampling Event
29-Mar-04		ND	ND	1st Quarter Sampling Event
22-Jun-04		ND	ND	2nd Quarter Sampling Event
17-Sep-04		ND	ND	3rd Quarter Sampling Event
17-Nov-04		ND	ND	4th Quarter Sampling Event
16-Mar-05		ND	0.2	1st Quarter Sampling Event
25-May-05		2.5	0.4	2nd Quarter Sampling Event
31-Aug-05		10.0	0.5	3rd Quarter Sampling Event
1-Dec-05		17.0	0.9	4th Quarter Sampling Event
9-Mar-06		31.0	1.2	1st Quarter Sampling Event
14-Jun-06		19.0	1.0	2nd Quarter Sampling Event
20-Jul-06		11.00	0.6	3rd Quarter Sampling Event
8-Nov-06		42.80	1.4	4th Quarter Sampling Event
28-Feb-07		46	1.5	1st Quarter Sampling Event

Date of Sample	TW4-7	CHCl3 Values	Nitrate Values	Sampling Event
29-Nov-99		256		Quarterly
15-Mar-00		616		Quarterly
2-Sep-00		698		Quarterly
29-Nov-00		684	1.99	Quarterly & Split Sample
28-Mar-01		747	2.46	Quarterly
20-Jun-01		1100	2.65	Quarterly
20-Sep-01		1200	3.38	Quarterly
8-Nov-01		1100	2.5	UDEQ Split Sampling Event
26-Mar-02		1500	3.76	First 1/4 2002 Sample
23-May-02		1600	3.89	Quarterly
12-Sep-02		1500	3.18	UDEQ Split Sampling Event
24-Nov-02		2300	4.6	Quarterly
28-Mar-03		1800	4.8	Quarterly
23-Jun-03		5200	7.6	2nd Quarter Sampling Event
12-Sep-03		3600	7.6	3rd Quarter Sampling Event
8-Nov-03		4500	7.1	4th Quarter Sampling Event
29-Mar-04	-	2500	4.63	1st Quarter Sampling Event
22-Jun-04		2900	4.83	2nd Quarter Sampling Event
17-Sep-04		3100	5.59	3rd Quarter Sampling Event
17-Nov-04		3800	6	4th Quarter Sampling Event
16-Mar-05		3100	5.2	1st Quarter Sampling Event
25-May-05		2700	5.4	2nd Quarter Sampling Event
31-Aug-05		3100	5.2	3rd Quarter Sampling Event
1-Dec-05		2500	5.3	4th Quarter Sampling Event
9-Mar-06		1900	1.0	1st Quarter Sampling Event
14-Jun-06		2200	4.5	2nd Quarter Sampling Event
20-Jul-06		2140	4.7	3rd Quarter Sampling Event
8-Nov-06		2160	4.6	4th Quarter Sampling Event
28-Feb-07		1800	5	1st Quarter Sampling Event

Date of Sample	TW4-8	CHCl3 Values	Nitrate Values	Sampling Event
29-Nov-99		ND		Quarterly
15-Mar-00		21.8		Quarterly
2-Sep-00	- "	102		Quarterly
29-Nov-00		107	ND	Quarterly & Split Sample
26-Mar-01		116	ND	Quarterly
20-Jun-01		180	ND	Quarterly
20-Sep-01		180	0.35	Quarterly
7-Nov-01		180	ND	UDEQ Split Sampling Event
26-Mar-02		190	0.62	First 1/4 2002 Sample
22-May-02		210	0.77	Quarterly
12-Sep-02		300	ND	UDEQ Split Sampling Event
24-Nov-02		450	ND	Quarterly
28-Mar-03		320	8.0	Quarterly
23-Jun-03		420	ND	2nd Quarter Sampling Event
12-Sep-03		66	ND	3rd Quarter Sampling Event
8-Nov-03		21.0	0.1	4th Quarter Sampling Event
29-Mar-04		24	0.65	1st Quarter Sampling Event
22-Jun-04		110	0.52	2nd Quarter Sampling Event
17-Sep-04		120	ND	3rd Quarter Sampling Event
17-Nov-04		120	ND	4th Quarter Sampling Event
16-Mar-05	·	10.0	ND	1st Quarter Sampling Event
25-May-05		ND	0.2	2nd Quarter Sampling Event
31-Aug-05		1.1	ND	3rd Quarter Sampling Event
1-Dec-05		ND	ND	4th Quarter Sampling Event
9-Mar-06	· · · · · · · · · · · · · · · · · · ·	1.3	0.3	1st Quarter Sampling Event
14-Jun-06		1.00	ND	2nd Quarter Sampling Event
20-Jul-06		ND	0.1	3rd Quarter Sampling Event
8-Nov-06		ND	ND	4th Quarter Sampling Event
28-Feb-07		2.50	0.7	1st Quarter Sampling Event

Date of Sample	TW4-9	CHCl3 Values	Nitrate Values	Sampling Event
20-Dec-99		4.24		Quarterly
15-Mar-00		1.88		Quarterly
2-Sep-00		14.2		Quarterly
29-Nov-00		39.4	ND	Quarterly & Split Sample
27-Mar-01		43.6	ND	Quarterly
20-Jun-01		59	.15	Quarterly
20-Sep-01		19	0.40	Quarterly
7-Nov-01		49	0.1	UDEQ Split Sampling Event
26-Mar-02		41	0.5	First 1/4 2002 Sample
22-May-02		38	0.65	Quarterly
12-Sep-02		49	0.2	UDEQ Split Sampling Event
24-Nov-02		51	0.6	Quarterly
28-Mar-03		34	0.6	Quarterly
23-Jun-03		33	0.8	2nd Quarter Sampling Event
12-Sep-03		32	1.1	3rd Quarter Sampling Event
8-Nov-03		46	1.1	4th Quarter Sampling Event
29-Mar-04		48	0.82	1st Quarter Sampling Event
22-Jun-04		48	0.75	2nd Quarter Sampling Event
17-Sep-04		39	0.81	3rd Quarter Sampling Event
17-Nov-04		26	1.2	4th Quarter Sampling Event
16-Mar-05		3.8	1.3	1st Quarter Sampling Event
25-May-05		1.2	1.3	2nd Quarter Sampling Event
31-Aug-05		ND	1.3	3rd Quarter Sampling Event
1-Dec-05		ND	1.3	4th Quarter Sampling Event
9-Mar-06		ND	1.5	1st Quarter Sampling Event
14-Jun-06		ND	1.5	2nd Quarter Sampling Event
20-Jul-06		ND	0.9	3rd Quarter Sampling Event
8-Nov-06		ND	0.7	4th Quarter Sampling Event
28-Feb-07		ND	0.6	1st Quarter Sampling Event

Date of Sample	TW4-10	CHCl3 Values	Nitrate Values	Sampling Event
21-Jan-02		14		Initial Sample
26-Mar-02		16	0.14	First 1/4 2002 Sample
21-May-02		17	0.11	Quarterly
12-Sep-02		6.0	ND	UDEQ Split Sampling Event
24-Nov-02		14	ND	Quarterly
28-Mar-03		29	0.2	Quarterly
23-Jun-03		110	0.4	2nd Quarter Sampling Event
12-Sep-03		74	0.4	3rd Quarter Sampling Event
8-Nov-03		75	0.3	4th Quarter Sampling Event
29-Mar-04		22	0.1	1st Quarter Sampling Event
22-Jun-04		32	ND	2nd Quarter Sampling Event
17-Sep-04		63	0.46	3rd Quarter Sampling Event
17-Nov-04		120	0.4	4th Quarter Sampling Event
16-Mar-05		140	1.6	1st Quarter Sampling Event
25-May-05	·	62.4	0.8	2nd Quarter Sampling Event
31-Aug-05	·	110	1.1	3rd Quarter Sampling Event
1-Dec-05		300	3.3	4th Quarter Sampling Event
9-Mar-06		190	2.4	1st Quarter Sampling Event
14-Jun-06		300	3.5	2nd Quarter Sampling Event
20-Jul-06		504	6.8	3rd Quarter Sampling Event
8-Nov-06		452	5.7	4th Quarter Sampling Event
28-Feb-07		500	7.6	1st Quarter Sampling Event

Date of Sample	TW4-11	CHCl3 Values	Nitrate Values	Sampling Event
21-Jan-02		4700		Initial Sample
26-Mar-02		4900	9.60	First 1/4 2002 Sample
22-May-02		5200	9.07	Quarterly
12-Sep-02		6200	8.84	UDEQ Split Sampling Event
24-Nov-02		5800	9.7	Quarterly
28-Mar-03	-	5100	9.7	Quarterly
23-Jun-03	-	5700	9.4	2nd Quarter Sampling Event
12-Sep-03		4600	9.9	3rd Quarter Sampling Event
8-Nov-03		5200	9.3	4th Quarter Sampling Event
29-Mar-04		5300	9.07	1st Quarter Sampling Event
22-Jun-04		5700	8.74	2nd Quarter Sampling Event
17-Sep-04		4800	8.75	3rd Quarter Sampling Event
17-Nov-04		5800	9.7	4th Quarter Sampling Event
16-Mar-05		4400	8.7	1st Quarter Sampling Event
25-May-05		3590	10.3	2nd Quarter Sampling Event
31-Aug-05		4400	9.4	3rd Quarter Sampling Event
1-Dec-05		4400	9.4	4th Quarter Sampling Event
9-Mar-06		4400	9.2	1st Quarter Sampling Event
14-Jun-06		4300	10	2nd Quarter Sampling Event
20-Jul-06		4080	10	3rd Quarter Sampling Event
8-Nov-06		3660	10	4th Quarter Sampling Event
28-Feb-07		3500	10.1	1st Quarter Sampling Event

Date of Sample	TW4-12	CHCl3 Values	Nitrate Values	Sampling Event		
12-Sep-02		1.5	2.54	UDEQ Split Sampling Event		
24-Nov-02		ND	2.2	Quarterly		
28-Mar-03		ND	1.9	Quarterly		
23-Jun-03		ND	1.8	2nd Quarter Sampling Event		
12-Sep-03		ND	1.8	3rd Quarter Sampling Event		
9-Nov-03		ND	1.6	4th Quarter Sampling Event		
29-Mar-04		ND	1.58	1st Quarter Sampling Event		
22-Jun-04		ND	1.4	2nd Quarter Sampling Event		
17-Sep-04		ND	1.24	3rd Quarter Sampling Event		
17-Nov-04	•	ND	1.5	4th Quarter Sampling Event		
16-Mar-05		ND	1.4	1st Quarter Sampling Event		
25-May-05		ND	1.6	2nd Quarter Sampling Event		
31-Aug-05		ND	1.5	3rd Quarter Sampling Event		
1-Dec-05		ND	1.4	4th Quarter Sampling Event		
9-Mar-06		ND	1.3	1st Quarter Sampling Event		
14-Jun-06		ND	1.4	2nd Quarter Sampling Event		
20-Jul-06		ND	1.4	3rd Quarter Sampling Event		
8-Nov-06		ND	1.4	4th Quarter Sampling Event		
28-Feb-07		ND	1.5	1st Quarter Sampling Event		

Date of Sample	TW4-13	CHCl3 Values	Nitrate Values	Sampling Event		
12-Sep-02		ND	ND	UDEQ Split Sampling Event		
24-Nov-02		ND	ND	Quarterly		
28-Mar-03		ND	0.2	Quarterly		
23-Jun-03		ND	0.2	2nd Quarter Sampling Event		
12-Sep-03		ND	ND	3rd Quarter Sampling Event		
9-Nov-03		ND	0.9	4th Quarter Sampling Event		
29-Mar-04		ND	0.12	1st Quarter Sampling Event		
22-Jun-04		ND	0.17	2nd Quarter Sampling Event		
17-Sep-04		ND	4.43	3rd Quarter Sampling Event		
17-Nov-04		ND	4.7	4th Quarter Sampling Event		
16-Mar-05		ND	4.2	1st Quarter Sampling Event		
25-May-05		ND	4.3	2nd Quarter Sampling Event		
31-Aug-05		ND	4.6	3rd Quarter Sampling Event		
1-Dec-05		ND	4.3	4th Quarter Sampling Event		
9-Mar-06		ND	4.2	1st Quarter Sampling Event		
14-Jun-06		ND	4.9	2nd Quarter Sampling Event		
20-Jul-06		ND	4.3	3rd Quarter Sampling Event		
8-Nov-06		ND	0.8	4th Quarter Sampling Event		
28-Feb-07		ND	4.0	1st Quarter Sampling Event		

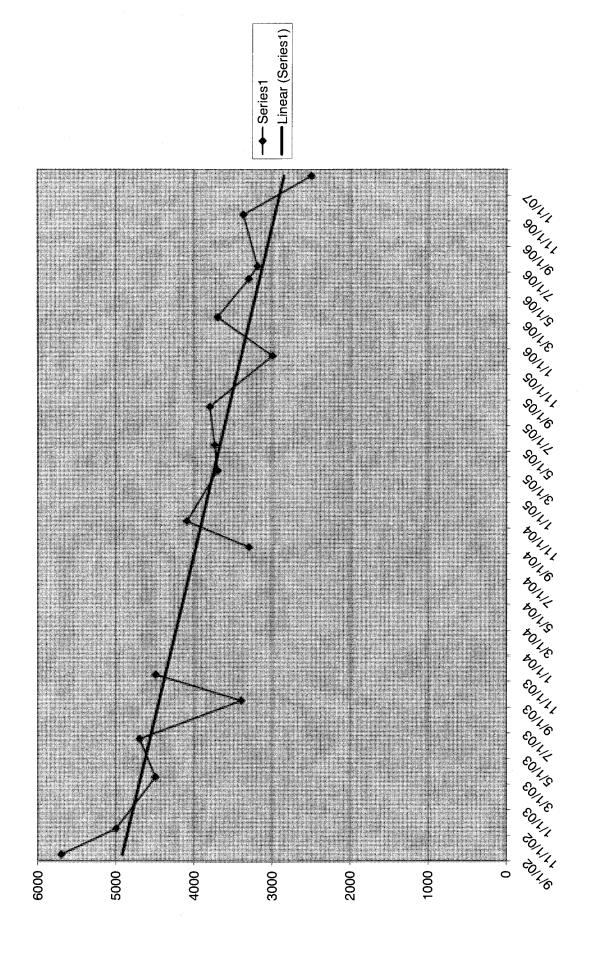
Date of Sample	TW4-15	CHCl3 Values	Nitrate Values	Sampling Event
12-Sep-02		2.6	ND	UDEQ Split Sampling Event
24-Nov-02		ND	ND	Quarterly
28-Mar-03		ND	0.1	Quarterly
23-Jun-03		7800	14.5	2nd Quarter Sampling Event
15-Aug-03		7400	16.8	Well Pumping Event Sample
12-Sep-03	***	2500	2.7	3rd Quarter Sampling Event
25-Sep-03		2600	2.5	Well Pumping Event Sample
29-Oct-03		3100	3.1	Well Pumping Event Sample
8-Nov-03		3000	2.8	4th Quarter Sampling Event
29-Mar-04		NA	NA	Unable to purge/sample
22-Jun-04		NA	NA	Unable to purge/sample
17-Sep-04		1400	0.53	3rd Quarter Sampling Event
17-Nov-04		300	0.2	4th Quarter Sampling Event
16-Mar-05		310	0.3	1st Quarter Sampling Event
30-Mar-05		230	0.2	1st Quarter POC Sampling
25-May-05		442	0.2	2nd Quarter Sampling Event
31-Aug-05		960	0.2	3rd Quarter Sampling Event
1-Dec-05		1000	0.3	4th Quarter Sampling Event
9-Mar-06		1100	0.2	1st Quarter Sampling Event
14-Jun-06		830	0.2	2nd Quarter Sampling Event
20-Jul-06		2170	1.4	3rd Quarter Sampling Event
8-Nov-06		282	0.3	4th Quarter Sampling Event
28-Feb-07		570	0.5	1st Quarter Sampling Event

Date of Sample	TW4-16	CHCl3 Values	Nitrate Values	Sampling Event		
12-Sep-02		140	ND	UDEQ Split Sampling Event		
24-Nov-02		200	ND	Quarterly		
28-Mar-03		260	ND	Quarterly		
23-Jun-03		370	ND	2nd Quarter Sampling Event		
12-Sep-03		350	ND	3rd Quarter Sampling Event		
8-Nov-03		400	ND	4th Quarter Sampling Event		
29-Mar-04		430	ND	1st Quarter Sampling Event		
22-Jun-04		530	ND	2nd Quarter Sampling Event		
17-Sep-04		400	ND	3rd Quarter Sampling Event		
17-Nov-04		350	ND	4th Quarter Sampling Event		
16-Mar-05		240	ND	1st Quarter Sampling Event		
25-May-05		212	ND	2nd Quarter Sampling Event		
31-Aug-05		85	ND	3rd Quarter Sampling Event		
1-Dec-05		14	1.4	4th Quarter Sampling Event		
9-Mar-06		39	3.0	1st Quarter Sampling Event		
14-Jun-06		13	1.9	2nd Quarter Sampling Event		
20-Jul-06		5	2.7	3rd Quarter Sampling Event		
8-Nov-06		13.6	5.6	4th Quarter Sampling Event		
28-Feb-07		8.70	12.3	1st Quarter Sampling Event		

Date of Sample	TW4-17	CHCl3 Values	Nitrate Values	Sampling Event		
12-Sep-02		1.6	ND	UDEQ Split Sampling Event		
24-Nov-02		ND	ND	Quarterly		
28-Mar-03		ND	ND	Quarterly		
23-Jun-03		ND	ND	2nd Quarter Sampling Event		
12-Sep-03		ND	ND	3rd Quarter Sampling Event		
8-Nov-03		ND	ND	4th Quarter Sampling Event		
29-Mar-04		ND	ND	1st Quarter Sampling Event		
22-Jun-04		ND	ND	2nd Quarter Sampling Event		
17-Sep-04		ND	ND	3rd Quarter Sampling Event		
17-Nov-04		ND	ND	4th Quarter Sampling Event		
16-Mar-05		ND	ND	1st Quarter Sampling Event		
30-Mar-05		ND	ND	1st Quarter POC Sampling		
25-May-05		ND	ND	2nd Quarter Sampling Event		
31-Aug-05		ND	ND	3rd Quarter Sampling Event		
1-Dec-05		ND	ND	4th Quarter Sampling Event		
9-Mar-06		ND	ND	1st Quarter Sampling Event		
14-Jun-06		ND	ND	2nd Quarter Sampling Event		
20-Jul-06		ND	ND	3rd Quarter Sampling Event		
8-Nov-06		ND	ND	4th Quarter Sampling Event		
28-Feb-07		ND	ND	1st Quarter Sampling Event		

Date of Sample	TW4-18	CHCl3 Values	Nitrate Values	Sampling Event		
12-Sep-02		440	1.49	UDEQ Split Sampling Event		
24-Nov-02		240	13.3	Quarterly		
28-Mar-03		160	13.1	Quarterly		
23-Jun-03		110	19	2nd Quarter Sampling Event		
12-Sep-03		68	19.9	3rd Quarter Sampling Event		
9-Nov-03		84	20.7	4th Quarter Sampling Event		
29-Mar-04		90	14	1st Quarter Sampling Event		
22-Jun-04		82	12.2	2nd Quarter Sampling Event		
17-Sep-04		38	14.5	3rd Quarter Sampling Event		
17-Nov-04		51	17.3	4th Quarter Sampling Event		
16-Mar-05		38	14.1	1st Quarter Sampling Event		
25-May-05		29.8	12.9	2nd Quarter Sampling Event		
31-Aug-05		39	13.3	3rd Quarter Sampling Event		
1-Dec-05		14	7.3	4th Quarter Sampling Event		
9-Mar-06		12	5.9	1st Quarter Sampling Event		
14-Jun-06		12	4.7	2nd Quarter Sampling Event		
20-Jul-06		10.80	6.1	3rd Quarter Sampling Event		
8-Nov-06	-	139.00	8.7	4th Quarter Sampling Event		
28-Feb-07		9.2	5.1	1st Quarter Sampling Event		

Date of Sample	TW4-19	CHCl3 Values	Nitrate Values	Sampling Event
12-Sep-02		7700	47.6	UDEQ Split Sampling Event
24-Nov-02		5400	42	Quarterly
28-Mar-03		4200	61.4	Quarterly
15-May-03		4700	NA	Well Pumping Event Sample
23-Jun-03		4500	11.4	2nd Quarter Sampling Event
15-Jul-03		2400	6.8	Well Pumping Event Sample
15-Aug-03		2600	4	Well Pumping Event Sample
12-Sep-03		2500	5.7	3rd Quarter Sampling Event
25-Sep-03	-	4600	9.2	Well Pumping Event Sample
29-Oct-03		4600	7.7	Well Pumping Event Sample
9-Nov-03		2600	4.8	4th Quarter Sampling Event
29-Mar-04			NA	Unable to purge/sample
22-Jun-04			NA	Unable to purge/sample
16-Aug-04		7100	9.91	Well Pumping Event Sample
17-Sep-04		2600	4.5	3rd Quarter Sampling Event
17-Nov-04	,	1800	3.6	4th Quarter Sampling Event
16-Mar-05		2200	5.3	1st Quarter Sampling Event
25-May-05		1200	5.7	2nd Quarter Sampling Event
31-Aug-05		1400	4.6	3rd Quarter Sampling Event
1-Dec-05		2800	ND	4th Quarter Sampling Event
9-Mar-06		1200	4.0	1st Quarter Sampling Event
14-Jun-06		1100	5.2	2nd Quarter Sampling Event
20-Jul-06		1120	4.3	3rd Quarter Sampling Event
8-Nov-07		1050	4.6	4th Quarter Sampling Event
28-Feb-07		1200	4	1st Quarter Sampling Event

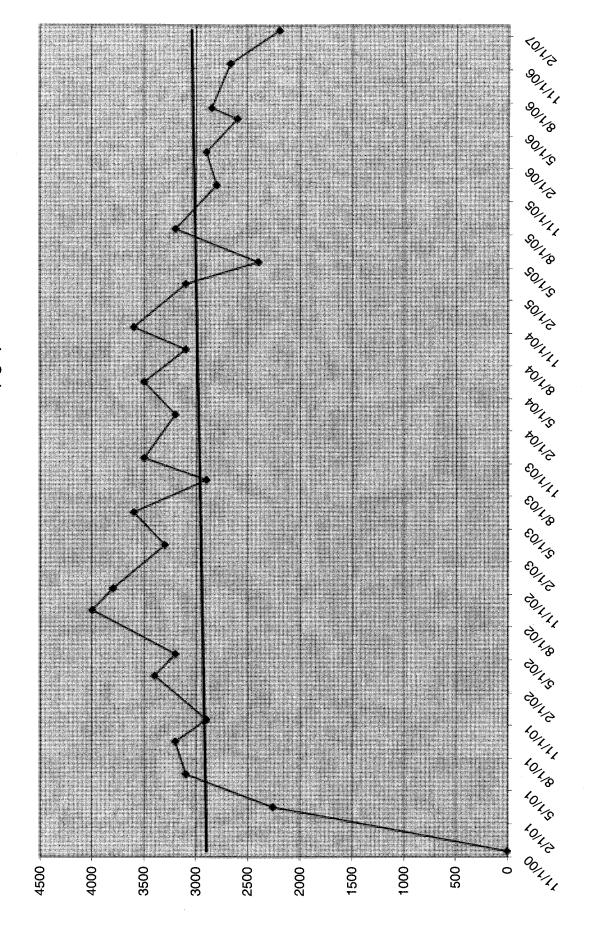

Date of Sample	TW4-20	CHCl3 Values	Nitrate Values	Sampling Event
25-May-05		39000	10.1	2nd Quarter Sampling Event
31-Aug-05		3800	2.9	3rd Quarter Sampling Event
1-Dec-05		19000	1.8	4th Quarter Sampling Event
9-Mar-06		9200	3.8	1st Quarter Sampling Event
14-Jun-06		61000	9.4	2nd Quarter Sampling Event
20-Jul-06		5300	2.9	3rd Quarter Sampling Event
8-Nov-06		11000	3.5	4th Quarter Sampling Event
28-Feb-07		4400	4.2	1st Quarter Sampling Event

Date of Sample	TW4-22	CHCl3 Values	Nitrate Values	Sampling Event		
25-May-05		340	18.2	2nd Quarter Sampling Event		
31-Aug-05		290	15.7	3rd Quarter Sampling Event		
1-Dec-05		320	15.1	4th Quarter Sampling Event		
9-Mar-06		390	15.3	1st Quarter Sampling Event		
06/14/06		280	14.3	2nd Quarter Sampling Event		
07/20/06		864	14.5	3rd Quarter Sampling Event		
11/08/06		350	15.9	4th Quarter Sampling Event		
28-Feb-07		440	20.9	1st Quarter Sampling Event		

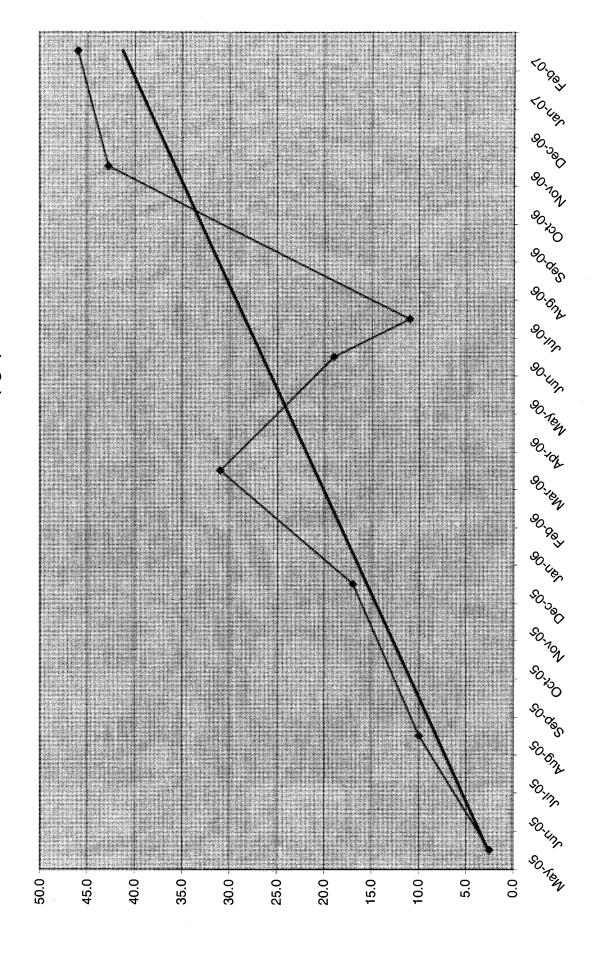
Date of Sample	TW4-21	CHCl3 Values	Nitrate Values	Sampling Event
25-May-05		192	14.6	2nd Quarter Sampling Event
31-Aug-05		78	10.1	3rd Quarter Sampling Event
1-Dec-05		86	9.6	4th Quarter Sampling Event
9-Mar-06		120	8.5	1st Quarter Sampling Event
14-Jun-06		130	10.2	2nd Quarter Sampling Event
20-Jul-06		106	8.9	3rd Quarter Sampling Event
8-Nov-06		12.5	5.7	4th Quarter Sampling Event
28-Feb-07		160.0	8.7	1st Quarter Sampling Event

MW-4 Chloroform Values (ug/L)

TW4-A Chloroform Values (ug/L)


50/80/6 50/80/9 50/80/E 20/82/6 2018019 70/80/E LORDELL 10/80/6 10/80/9 66/60/9 7000 0009 2000 1000 0 4000 3000 2000

TW4-1 Clorororm Values (ug/L)


TW4-2 Chloroform Values (ug/L)

TW4-3 Chloroform Values (ug/L)

TW4-4 Chloroform Values (ug/L)

TW4-6 Chloroform Values (ug/L)

TW4-7 Chloroform Values (ug/L)

TW4-8 Chloroform Values (ug/L)

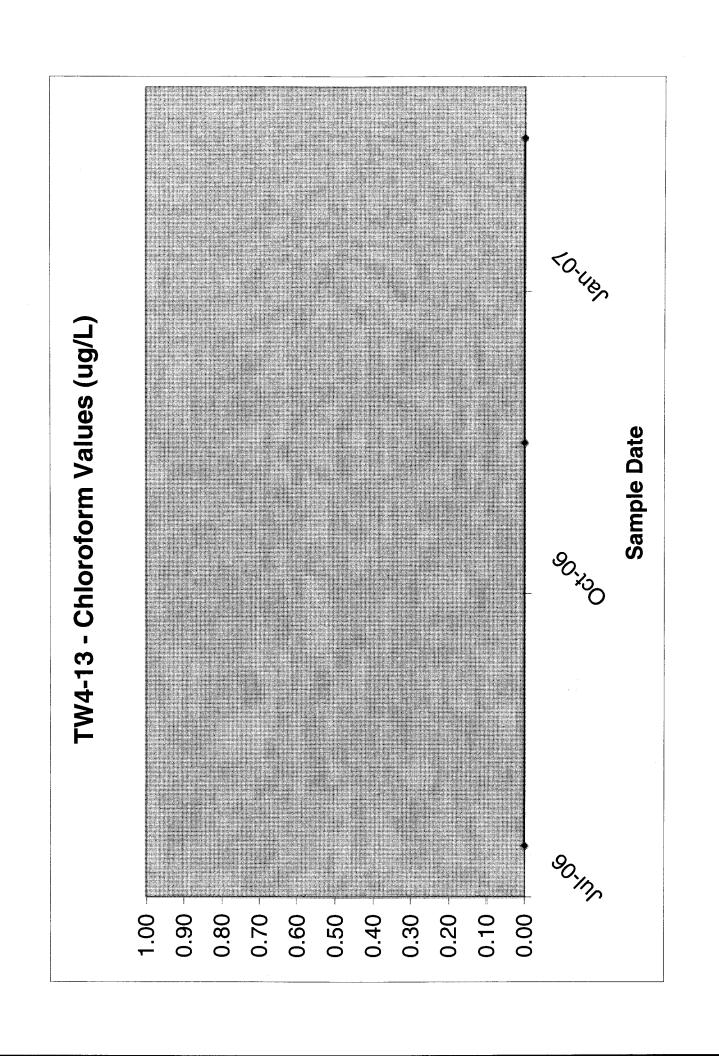
TW4-9 Chlorofrom Values (ug/L)

9

TW4-10 Chloroform Values (ug/L)

7000 0009 4000 3000

TO.UES

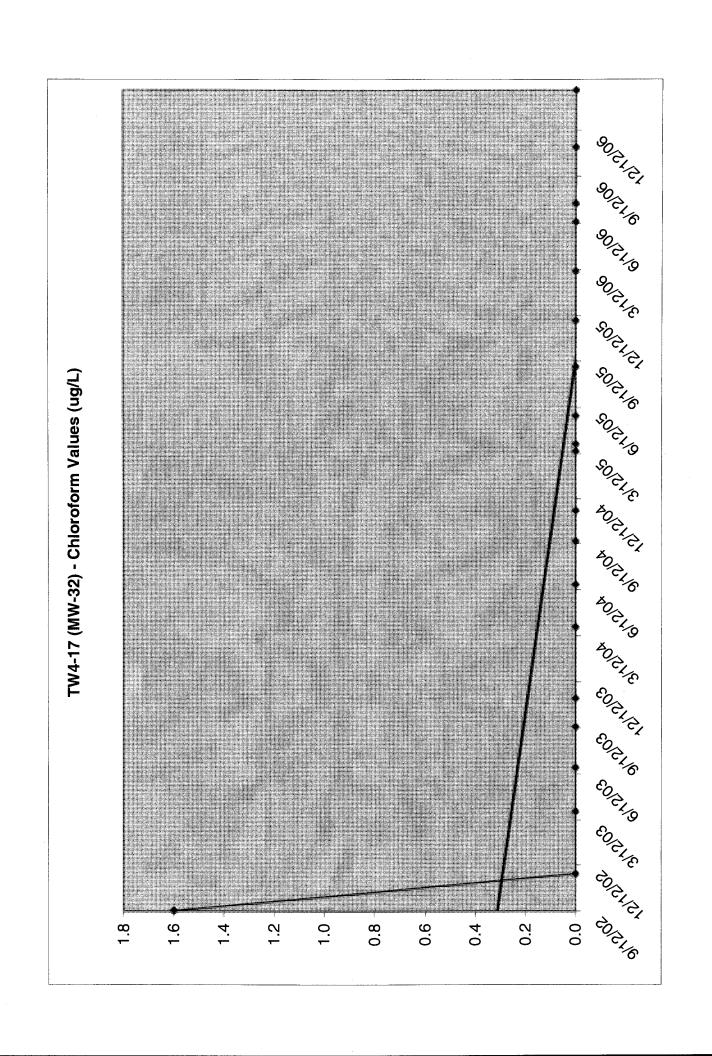

30.085.185 0N.085.185

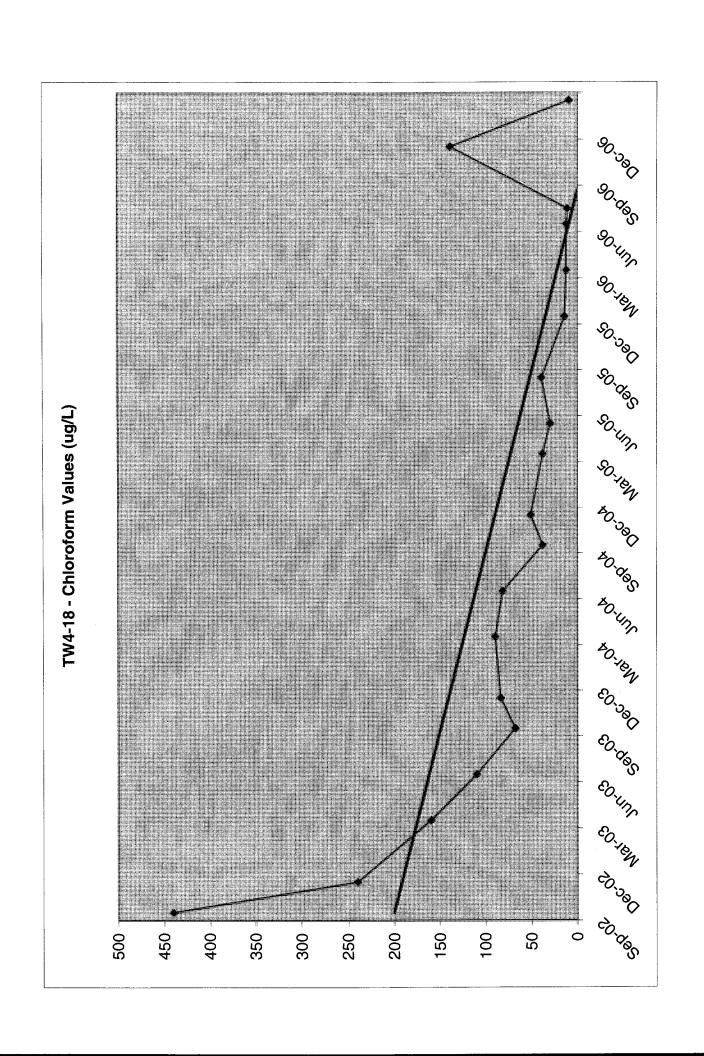
\$0.70% \$0.70%

TO SON BOILES

TW4-11 Chloroform Values (ug/L)

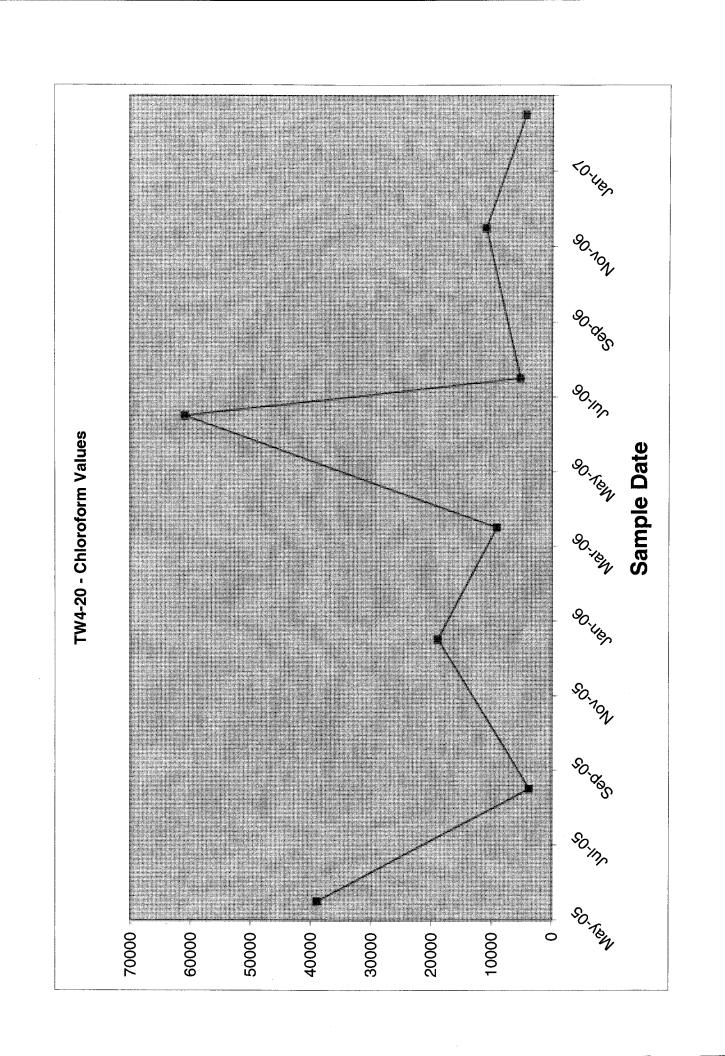
TW4-12 Chloroform Values (ug/L)

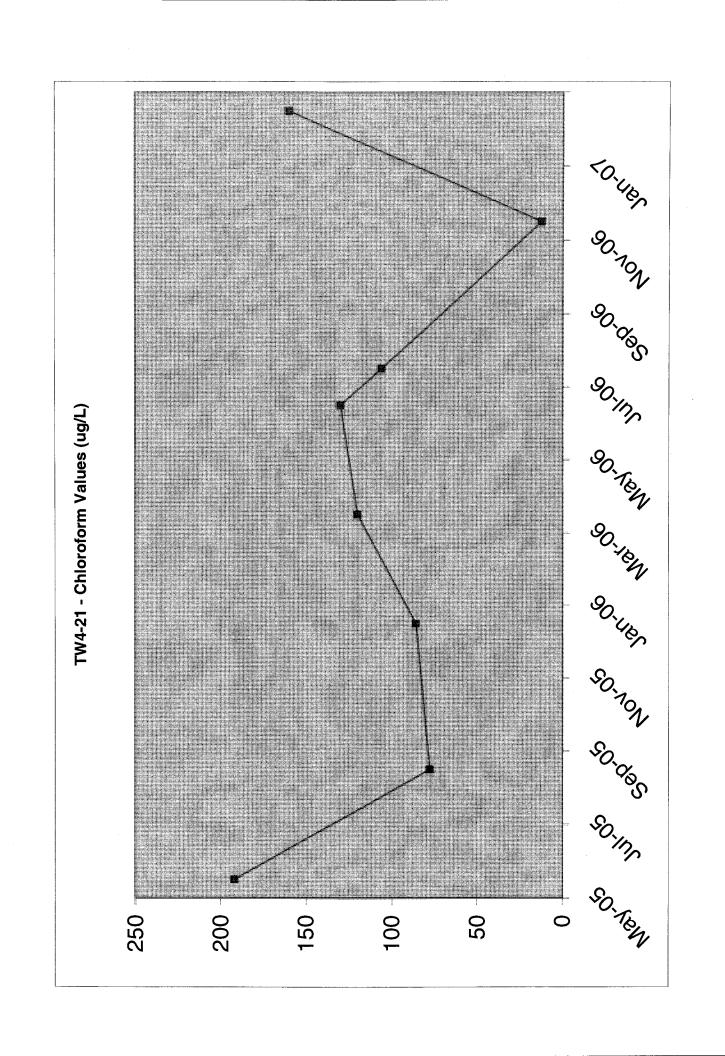



SOLVEY SOLVE SOLVE SOLVE SOLVE SOLVE SOLVE SOLVE Ö

TW4-15 (MW 26) - Chloroform Values (ug/L)

TO. US 90.70N %._{0%} 90.11m %. Ten %. Jen OUE, 80.70N 80.0gs 50/1/2 Soren Soren SO.UES *0.70x *0.0% *O,IM *O.Ton *O.Jeh *O.U. co. John co. COIM COTEN co.jen EO.UR co.70N 200 9 200 00 300


TW4-16 Chloroform Values (ug/L)



TOPLE Local Locals Tople TOCH ook to Och SOCHIL Sololo SOCIA SOLIS \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 POCIS *Ocho POCIL coci,11 COCIO COCIL color's COCOCAL COCIAL color 6 0006 8000 2000 0009 2000 4000 3000 2000 1000

TW4-19 Chloroform Values (ug/L)

TW4-22 - Chloroform Values (ug/L)

Chloroform Investigation Wells - Daily Inspection Report

Date

_			,			· · · · · ·				
	Abnormal Operation or Potential Problems									
	Pump Operational (mark OK or note otherwise)					:				
	ow Metar perational rark OK or note therwise)		4				·			
	Heat Lamp We Electrical Operational Fi System Status O K (mark OK (mark OK or (m or note note or note otherwise) otherwise)						,			
	Wellhead Protective Electrical Boxes - System (mark OK (mark OK or note or note		·							
	Wellhead Protective Boxes - (mark OK or note								, .	
	Weather and Temp.				-					
	Inspector									
	Тт						·			
	Inspection No.	Υ.	8	ю	4	w	ဖ	۲	œ	